
Proc. of FISSCL, Paris, October 29-31, 2007

Proceedings of First International

Symposium on Sanskrit

Computational Linguistics

Ed. Gérard Huet & Amba Kulkarni

INRIA, October 2007

FISSCL-i

Proc. of FISSCL, Paris, October 29-31, 2007

Contents

Introduction i

Program Committee v

Sponsor vi

Conference program ix

Symposium Papers

1 Exocentric Compounds in Classical Sanskrit
Brendan Gillon 1

2 From Paninian Sandhi to Finite State Calculus
Malcolm D Hyman 13

3 Analysis of Samskrit Text: Parsing and Semantic Relations
Pawan Goyal, Vipul Arora and Laxmidhar Behera 23

4 SanskritTagger, a Stochastic Lexical and POS tagger for Sanskrit
Oliver Hellwig 37

5 Inflectional Morphology Analyzer for Sanskrit
Girish Nath Jha, Muktanand Agrawal, Subash, Sudhir K. Mishra, Diwakar Mani, Diwakar Mishra, Manji
Bhadra and Surjit K. Singh 47

6 Phonological Overgeneration in the Paninian system
Malhar Kulkarni, M M Vasudevashastri 67

7 Modeling Paninean Grammar
Peter M. Scharf 77

8 Simulating the Paninian system of Sanskrit Grammar
Anand Mishra 89

9 An Effort to Develop a Tagged Lexical Resource for Sanskrit
Shrinivasa Varakhedi, V. Jaddipal and V. Sheeba 97

10 Critical Edition of Sanskrit Texts
Marc Csernel, François Patte 103

Index of Authors 123

FISSCL-ii

Proc. of FISSCL, Paris, October 29-31, 2007

Introduction

This volume contains the proceedings of the First International Symposium on Sanskrit Computational Linguistics,
held at the Paris-Rocquencourt Research Center of INRIA form the 29th to the 31st of October 2007.

The grammatical tradition of Sanskrit and Computational Linguistics – both have a lot to offer to each other.
This symposium provides a common platform to the traditional Sanskrit scholars and computational linguists
to come together to share their knowledge, learn from and collaborate with the researchers from each other’s
disciplines. We hope this platform will result in a fruitful combination of two disciplines leading to new insights
in the field of computational linguistics.

Computational Linguistics which started as an interdisciplinary branch a few decades ago, is today a full
fledged branch of knowledge on its own. After 50 years of intensive research, impressive linguistic-based appli-
cations such as sophisticated search engines are in daily use. Although some technology is generic and can be
parameterized properly for describing natural language structures in terms of formal linguistic models, in real-
ity, such tools are available only for a select few languages. One crucial point is the development of linguistic
resources, such as generative lexicons, treebanks of tagged reference corpuses, etc.

However, Sanskrit language offers a very interesting challenge for computational linguists:

• The Sanskrit language was studied to a high degree of formalization from high antiquity by genius linguists
such as Pān. ini, and a continuous tradition of commenting and refining his work (Kātyāyana, Patañjali,
Bhartr.hari, Nāgesha Bhat.t.a, etc.), still very much alive, leaves hope for the emergence of new computational
models of linguistic treatment, well tuned by definition to the Sanskrit language.

• The Sanskrit corpus contains a wealth of knowledge and wisdom (most of which is also available in elec-
tronic media) which has not been yet properly brought to light, despite centuries of both Western and Indian
scholarship.

• Sanskrit benefits from meticulously checked data bases of verb forms, noun paradigm classes, and a host
of other information necessary for building the computational tools for analysis and generation of Sanskrit
texts.

• Yet the computational challenge of even simple tasks such as part-of-speech tagging has been a stumbling
block hampering the use of computers for even simple philological tasks, such as finding all forms of a given
root or morphological derivation in a text.

In view of recent progress reported for instance at the 13th World Sanskrit Conference in Edinburgh last July
(http://www.arts.ed.ac.uk/sanskrit/13thWSC/3participants.html) and at the The First
National Symposium on Modeling and Shallow Parsing of Indian Languages (MSPIL-06) in Mumbai last April
(http://www.cfilt.iitb.ac.in/˜mspil-06/id25.htm), it appeared to us that the time is ripe to
coordinate our efforts at Computational Linguistics for Sanskrit. In quite a few sites worldwide, morpho-phonetic
processing tools have been used to generate morphological banks, lemmatise forms, analyse sandhi, and even
do some semantic processing. It would be nice if these various tools were interoperable, to the extent of being
somehow composable. We would then get a leverage effect, by using their complementary capabilities. Efforts
such as building Wordnet lexicons and tagged treebanks could be mutualized between the various teams. Mutual
evaluation of the various tools would lead to their mutual improvement. This should not be done in an ad-hoc
manner for Sanskrit, of course, it should follow proper standardisation of interchange formats, consistent with the
international normalisation efforts along up-to-date technology (XML, Unicode, etc) for our work to be durable.

With this view in mind a core team of 6 members was formed and the team decided to hold a Symposium
in order to benefit from the experience of other teams working in the area of Sanskrit Computational Linguistics
worldwide.

FISSCL-iii

Proc. of FISSCL, Paris, October 29-31, 2007

This volume contains the papers selected for presentation at this First International Symposium on Sanskrit
Computational Linguistics. The papers submitted were reviewed by at least three referees, and the reports were
made available to the program committee members for open discussions if any. The reviews were well received
and approved by the Program Committee. Ten papers were selected for presentation at the Symposium and one
for discussion in the accompanying Workshop on standards for interoperable issues.

It is very encouraging that the selected papers cover a wide range of topics ranging from generating criti-
cal editions, tagging the existing corpus, developing various tools such as word analysers and generators, POS
taggers and Parsers, applying modern computational tools such as Finite State technology to model the sandhi
phenomenon in Sanskrit, studying contrastive linguistic phenomenon from different grammatical frameworks, and
finally modeling Pān.nini’s monumental grammar, the As.t.ādhyāyı̄.

We thank all the Program Committe members for their valuable support to make the symposium a success. We
are grateful to Prof. Paul Kiparsky for accepting our invitation to deliver the invited conference.

Finally we thank all the researchers who responded to our call for papers and participants to this event without
whose response the Symposium and Workshop would not have been a success.

We thank INRIA for the main financial support, and the other sponsors (Ecole des Hautes Études, UMR Mon-
des Iranien et Indien, University of Hyderabad Sanskrit Department, Rashtriya Sanskrit Vidyapeetha Tirupati and
Rashtriya Sanskrit Sansthan) for additional invaluable support. Mrs Chantal Girodon from the Paris-Rocquencourt
INRIA Research Center provided local organization, we thank her for insuring a smooth administrative operation.

Paris, October 2007,
Gérard Huet & Amba Kulkarni

FISSCL-iv

Proc. of FISSCL, Paris, October 29-31, 2007

Program Committee

Pushpak Bhattacharyya, Computer Science and Engineering Department, IIT Mumbai

Brendan S. Gillon, Department of Linguistics, McGill University, Montreal

Jan Houben, Directeur d’Etudes, École Pratique des Hautes Études, Paris

Gérard Huet, INRIA Rocquencourt (co-chair)

Girish Nath Jha, Special Centre for Sanskrit Studies, J.N.U. New Delhi

Amba Kulkarni, Department of Sanskrit Studies, University of Hyderabad (co-chair)

Malhar Kulkarni, Dept. of Humanities & Social Sciences, IIT Mumbai

Alain Lecomte, UFR Sciences du langage, Université Paris 8, Saint-Denis

Narayana Murthy Kavi, Computer Science Dept, University of Hyderabad

Georges-Jean Pinault, Directeur d’Etudes, École Pratique des Hautes Études, Paris

K. V. Ramkrishnamacharyulu, Sanskrit University, Jaipur

Peter M. Scharf, Department of Classics, Brown University, Providence, RI

Shivamurthy Swamiji, Sri Taralabalu Jagadguru Brihanmath, Sirigere (Karnataka)

Muneo Tokunaga, Graduate School of Letters, Kyoto University, Kyoto

Lalit Kumar Tripathi, Rashtriya Sanskrit Sansthan, Allahabad

Srinivasa Varakhedi, Department of Shabdabodha and Language Technologies, Rashtriya Sanskrit Vidyapeetha,
Tirupati

FISSCL-v

Proc. of FISSCL, Paris, October 29-31, 2007

SPONSORED BY

Figure 1: INRIA

Figure 2: Univ of Hyderabad

Figure 3: EPHE

FISSCL-v

Proc. of FISSCL, Paris, October 29-31, 2007

Figure 4: EPHE

Figure 5: Rashtriya Sanskrit Vidyapeetha, Tirupati

Figure 6: Rashtriya Sanskrit Sansthan, Delhi

FISSCL-vi

Proceedings of the First International Symposium on Sanskrit Computational Linguistics, Paris,France, October 29-31, 2007

FISSCL-viii

Proceedings of the First International Symposium on Sanskrit Computational Linguistics, Paris,France, October 29-31, 2007

Conference Program

Monday October 29th 2007

Opening session (10 am - 10:45 am)

Invited lecture by Pr. Paul Kiparsky (11 am - 12 noon)

Session 1(2pm - 4 pm)

1 Exocentric Compounds in Classical Sanskrit
Brendan Gillon

13 From Paninian Sandhi to Finite State Calculus
Malcolm D Hyman

Tuesday October 30th 2007

Session 2(10 am - 12 noon)

23 Analysis of Samskrit Text: Parsing and Semantic Relations
Pawan Goyal, Vipul Arora and Laxmidhar Behera

37 SanskritTagger, a Stochastic Lexical and POS tagger for Sanskrit
Oliver Hellwig

Session 3(2 pm - 4 pm)

47 Inflectional Morphology Analyzer for Sanskrit
Girish Nath Jha, Muktanand Agrawal, Subash, Sudhir K. Mishra, Diwakar Mani, Diwakar Mishra, Manji
Bhadra and Surjit K. Singh

67 Phonological Overgeneration in the Paninian system
Malhar Kulkarni, M M Vasudevashastri

Workshop(4:15 pm - 5:45 pm)

Wednesday October 31st 2007

Session 4(10 am - 12 noon)

77 Modeling Paninean Grammar
Peter M. Scharf

89 Simulating the Paninian system of Sanskrit Grammar
Anand Mishra

FISSCL-ix

Proceedings of the First International Symposium on Sanskrit Computational Linguistics, Paris,France, October 29-31, 2007

Session 5(2 pm - 4 pm)

97 An Effort to Develop a Tagged Lexical Resource for Sanskrit
Shrinivasa Varakhedi, V. Jaddipal and V. Sheeba

103 Critical Edition of Sanskrit Texts
Marc Csernel, François Patte

Workshop(4:15 pm - 5:45 pm)

123 Index of Authors

FISSCL-x

EXOCENTRIC (BAHUVR̄IHI) COMPOUNDS IN CLASSICAL
SANSKRIT

Brendan S. Gillon
McGill University

October 10, 2007

1. INTRODUCTION

Constituency grammars originated with Leonard Bloomfield (1933) and were developed during the nineteen forties
and nineteen fifties by a number of American structuralist linguists, including Harris (1946), Wells (1947) and
Hockett (1954) — to mention but a few. In the late nineteen fifties, Chomsky (1957) suggested that constituency
grammars could be formalized as context free grammars. It isnow clear that context free grammars fall short of
properly formalizing the constituency grammars of the American Structuralists (Manaster-Ramer and Kac 1990).
Indeed, in the nineteen sixties, Chomsky himself formalized a number of other important aspects of constituency
grammars, introducing more complexity to the labels, both terminal and non-terminal, and permitting the use of
null elements.

Though constituency grammars were initially conceived of as applying to phrases, work in the nineteen eighties
(Di Sciullo and Williams 1987; Selkirk 1982; Williams 1981)showed that such rules could be used to profitably
analyze compounds and derivational morphology of English.Gillon (1995) showed that the same analysis extended
to the analysis of compounds and derivational morphology inClassical Sanskrit.

The aim of this paper is to look more carefully at the application of constituency rules to the analysis of
exocentric (bahuvr̄ıhi) compounds. In particular, I wish to show that the treatmentof exocentric (bahuvr̄ıhi)
compounds in classical Sanskrit requires all of the enrichments of context free grammars which linguists think to
be required. In particular, I shall show that exocentric compounds are nicely analyzed with the use of a phonetically
null suffix. I shall also show that argument frames, a generalization of subcategorization frames, also play a key
role in their analysis; these argument frames also play, as Ishall show, a key role is providing a satisfactory analysis
of so-called non-constituent compounds, a kind of compoundof Classical Sanskrit, long recognized by the Indian
grammatical tradition as problematic.

2. EXOCENTRIC (BAHUVRı̄HI) COMPOUNDS

The classical Indian grammatical tradition identifies a number of different kinds of exocentric (bahuvr̄ıhi) com-
pounds. They include: privative exocentric (nañ-bahuvr̄ıhi) compounds, comitative exocentric (saha-bahuvr̄ıhi
compounds, prepositional exocentric (prādi-bahuvr̄ıhi) compounds, homo-denotative exocentric (sam̄anādhikaran. a-
bahuvr̄ıhi) compounds, and hetero-denotative exocentric (vyadhikaran. a-bahuvr̄ıhi) compounds. Our attention will
be confined to homo-denotative ones (sam̄anādhikaran. a-bahuvr̄ıhi).

Homo-denotative exocentric (sam̄anādhikaran. a-bahuvr̄ıhi)1 compounds are compounds whose canonical phrasal
paraphrase is a relative clause in which the first constituent of the compound is predicated of the second, and they

1Homo-denotation (s ām ān ādhikaran. ya) is the counterpart in the Indian grammatical tradition of the Western technical notion of concord
or agreement. As will be elaborated below, adjectives whichmodify nouns in Sanskrit agree with the nouns in case, numberand gender.
The concord is seen by the traditional Indian grammarian as accruing to the fact that a noun and an adjective modifying it have the same

1

Proc. of FISSCL, Paris, October 29-31, 2007

thereby share the first, or nominative, case – and if the first constituent is an adjective, they agree in number and
gender as well. Notice that the relationship of agreement incase, and where possible number and gender as well,
is true of the canonical phrasal paraphrase not only of exocentric compounds, but also of descriptive compounds
(karmadh̄araya). Finally, homo-denotative exocentric compounds are so-called because they modify other con-
stituents much in the way adjectives modify nouns. Putting these observations together, one arrives at the natural
hypothesis that exocentric compounds are derived from descriptive compounds by zero affixation which converts
a descriptive compound into an adjective.

(1) Exocentric (bahuvr̄ıhi) Compound:
Compound: samacittah. (even-minded)
Analysis: ((A sama)≺(N cittah.))1

((N even)≺(N mind))
Paraphrase: [RC [V P (asti)

(is)
[AP1 samam

even
] [NP1

cittam
mind

] yasya
whose

]

whose mind is even

The evidence that homo-denotative exocentric (sam̄anādhikaran. a-bahuvr̄ıhi) compounds are adjectives is that
they have all the properties adjectives in Sanskrit have. First, adjectives in Sanskrit, like those in Latin, agree with
the nouns they modify in case, number, and gender. Consider the adjectivetı̄ks.n. a (sharp). If it modifies a noun
in the nominative, singular, masculine, sayasih. (sword), then it has the formtı̄ks.n. ah. ; and if it modifies a noun
in the nominative, singular, feminine, saychur̄ı (knife), then it has the formtı̄ks.n. ā; and if it modifies a noun in
the nominative, singular, neuter, saypatram(blade), then it has the formtı̄ks.n. am. Now consider the compound
d̄ırgha-kan. t.ha. If it is to be construed with a masculine, singular noun in the nominative case, saypurus.ah. (man), to
yield the senselong-necked man, then the compound must have the nominative, masculine, singular form, namely,
d̄ırgha-kan. t.hah. . If it is to be construed with a feminine, nominative, singular noun, saystr̄ı (woman), to yield the
senselong-necked woman, then the compound must have the feminine, nominative, singular form,d̄ırgha-kan. t.hā.
And finally, if it is to be construed with a neuter, nominative, singular noun, saymitram(friend), to yield the sense
long-necked friend, then the compound must have the neuter, nominative, singular form,d̄ırgha-kan. t.ham.

Next, adjectives in Sanskrit can be turned into abstract nouns by the affixation of the suffix -tva (-ness): for ex-
ample, the adjectivekr. śa(thin) may be converted into the abstract noun,kr. śa-tva(thin-ness). Exocentricbahuvr̄ıhi
compounds are susceptible of the same conversion: for example, d̄ırgha-kan. t.ha (long-neck-ed; cf., level-head-ed)
be turned intod̄ırgha-kan. t.ha-tva(long-neck-ed-ness; cf., level-head-ed-ness).

Moreover, just as an adjective such askr. śah. (thin) can function, as its English translation can, as a common
noun, meaning the same thing as its English nominal counterpart, the thin, so too should an exocentric (bahuvr̄ıhi)
compound be liable to function as a common noun. And this too is true, as observed by Speijer (1886,§222, fn.
1) and as exemplified by following compound and its commentarial gloss.

(2.1) NBT 48.4
(vyutpanna≺saṁketasya)

denotation (sam ān ādhikaran. a). A homo-denotative exocentric compound is one in which thetwo principal overt constituents denote the
same thing, that is, they appear in the same case, and if the first principal overt constituent is an adjective, they agree in case, number, and
gender.

FISSCL-2

Proc. of FISSCL, Paris, October 29-31, 2007

(2.2) NBTP 49.1-2
vyutpannah.

arisen
jñ ātah.
known

saṁketah.
convention

yena
by whom

sah.
he

One by whom the conventions of language are known
(jñāta (known) glossesvyutpanna(arisen).)

There is independent confirmation that homo-denotative exocentric (sam̄ana-adhikaran. a-bahuvr̄ıhi) compounds
are best treated as descriptive (karmadh̄araya) compounds to which a phonetically null, possessive, adjectival suf-
fix (symbolized hence forth with ‘B’) is affixed. Sanskrit hasa phonetically overt, possessive, adjectival suffix
-ka which is virtually synonymous with the phonetically null one just hypothesized. Though their distributions
are somewhat different (A 5.4.151 ff.), nonetheless, they overlap to such an extent that commentators to a text in
which an exocentric (bahuvr̄ıhi) compound occurs frequently repeat the compound, adding the -kasuffix to signal
the fact that the compound in question is to be construed, notas a descriptive (karmadh̄araya) compound, but as
an exocentric (bahuvr̄ıhi) compound (Boose and Tubb 1981, ch. 5, sec. 15).

English too has homo-denotative exocentric compounds. By and large, they are marked by the adjectival,
possessive suffix, -ed. These English compounds, exemplified by such compounds aslonglegged, literal-minded,
andtwo-footed, have a distribution narrower than that of its counterpart in Sanskrit — a fact which will be dilated
on below.

Not every English homo-denotative exocentric compound hasthe -ed suffix. In particular, English homo-
denotative exocentric compounds which serve as proper names or epithets seem to require a phonetically null
counterpart to the -ed suffix.2 Examples of proper names are particularly common in children’s stories. For
example, in the children’s movie,Land Before Time, the two dinosaurs which are the main characters are named,
big foot and long neck, instead ofbig-footedand long-necked. Examples of epithets are such compounds asred-
head, dim-wit, hard-back, etc., to which there correspondred-headed, dim-witted, hard-backed, and so forth. (See
Marchand 1969, ch. 2, sec. 18 for other examples.) Moreover,it seems that the -ed suffix and its phonetically
null counterpart are in free variation in exocentric compounds which are initial constituents in larger compounds:
long-necked bottle plantandlong neck bottle plantboth denote plants for bottles whose necks are long.

Another parallel between English and Sanskrit homo-denotative exocentric (sam̄ana-adhikaran. a-bahuvr̄ıhi)
compounds is the predication relation in the canonical paraphrase may be metaphorical, instead of literal. Thus,
in the compoundscandra-mukha(moon-faced), sth̄ula-caran. a (club-footed), and ayo-mus. t.i iron-fisted, a face
(mukha) is likened unto a moon (candra), a foot (caran. a) unto a club (sth̄ula), and a fist (mus.t.i) unto iron (ayas).

As noted by Di Sciullo and Williams (1987, p. 30), in English,constituents outside of a compound cannot be
construed with constituents subordinate within a compound. This generalization is undoubtedly true of English
compound formation, as illustrated by the contrast in the interpretability of the expressions in (3).

(3.1) ((man≺eating)≺shark)
(3.2) *(eating≺shark) of men

Interestingly, this generalization was regarded as true ofSanskrit by P ān. ini. His treatment of compounds
is to pair them with canonical phrasal paraphrases with which they share a common derivational ancestor; in
addition to their semantic relation, they bear the syntactic relations of having the same heads and of having the
same constituency. Hence, the constituency of compounds mirrors that of their canonical phrasal paraphrases. A
condition on compound formation is that two elements cannotundergo compounding, the deletion of morphology
from the subordinate element, unless the two elements form aconstituent (A 2.1.4). A consequence of this is that
inflected lexical items exterior to a compound are not construable with subordinate constituents within it. The
applicability of this rule is illustrated both by Patañjali, in his Mah ābh ās.ya, or Great Commentary, on P ān. ini’s

2It is interesting to note in this connection that the Sanskrit suffix -ka, used to mark phonetically abahuvr ı̄hicompound, is said by
P ān. ini (A 5.4.155) to be prohibited from affixation tobahuvr ı̄hicompounds which serve as names.

FISSCL-3

Proc. of FISSCL, Paris, October 29-31, 2007

As.t. ādhy āy ı̄ (at A 2.1.1), and by Bhartr.hari, in his work on the semantics of Sanskrit (VP 3.14.46), with the
following example:

(4.1) [NP1
((r.ddha

rich
≺ r āja

king
)≺purus.ah.

man
)]

servant of a rich king
(4.2) *[NP1

[AP6
r.ddhasya
of rich

] (r āja≺purus.ah.)
king-man

]

servant of a rich king

Thus, the expression in (4.1) is acceptable, whereas the onein (4.2) is not, as signalled by the asterisk.
Though the generalization holds of English compounds, it does not of Sanskrit compounds. Counter-examples

are furnished both by Patañjali (MBh on A 2.1.1) and by Bhartr.hari (VP 3.14.47):

(5.1) [NP6
[NP6

Devadattasya
of Devadatta

] guroh.
of teacher

] kulam
family

(5.2) (Devadatta≺guru)≺kulam
Devadatta-teacher-family

(5.3) [NP6
Devadattasya
of Devadatta

] (guru≺kulam)
teacher-family

Devadatta’s teacher’s family

Indeed, compounds appearing in configurations such as that in (5.3) are given a special name by Sanskrit gram-
marians: they call themasamarthacompounds (i.e., non-constituent compounds). Moreover, these compounds
are well attested in the classical literature. A study of over three-hundred sentences, chosen essentially at random
from the Sanskrit corpus, reveals thirteen clear cases of non-constituent (asamartha) compounds. (See Appendix
I in Gillon 1993.) And a study of the first approximately five-hundred sentences of a single text reveals forty-three
clear cases. (See Appendix II in Gillon 1993.)3

Thus, for example, in the best known play by the finest dramatist of Sanskrit literature, Kalid āsa’sŚakuntal̄a,
one finds precisely these configurations.

(6) Ś 3.9.16 (= SG 3.1.6)
[NP1

[NP3
[NP7

tasy ām
on her

] (snigdha≺dr.s.t.y ā)
fixed-gaze

]

(s ūcita≺abhil ās.ah.)-B
indicated-affection-ed

]

.. whose affection was indicated by his gaze being fixed on her

Here, the past passive participle,sūcita (indicated), which is a subordinate constituent within the exocentric
(bahuvr̄ıhi) compoundsūcita≺abhilās. ah. (* indicated-affectioned: whose affection was indicated), is construed
with the third, or instrumental, case noun phrasetasȳam snigdha≺dr. s. t.yā (by his gaze being fixed on her). More-
over, this noun phrase itself exhibits a non-constituent (asamartha) compound, for the past passive participle,
snigdha(fixed) is found as a subordinate constituent in the compoundsnigdha-dr. s. t.yā (by fixed-gaze: by his gaze
being fixed), yet it is construed withtasȳam (on her), a seventh, or locative, case noun phrase, for which the verb
snih(to fix) subcategorizes.

One person to attempt to meet the challenge presented by these compounds to P ān. ini’s grammar of Sanskrit was
Bhartr.hari, who suggested that non-constituent (asamartha) compounds are limited to cases where the subordinate

3To put these frequencies in perspective, I should point out that non-constituent (asamartha) compounds occurred more frequently in
each corpus taken separately or jointly than either indirect questions or relative clauses.

FISSCL-4

Proc. of FISSCL, Paris, October 29-31, 2007

constituent in the compound expresses a relation. Bhartr.hari’s insight is a deep one. The remainder of this paper
is devoted to showing how this insight might be captured within constituency grammars and then applied to not
only non-constituent compounds but also to exocentric ones. The main concept is that of an argument frame, or an
enriched subcategorization frame.

An argument frame has its classical quantificational logic.In elementary model theory, the set of predicates is
partitioned into cells of the same degree, or adicity. The set of predicates are partitioned into the family of sets,
one of which comprises all the one-place predicates, another all the two-place predicates, etc. This partitioning of
the predicates has two effects. On the one hand, it helps to determine which string of symbols is a well-formed
formula and which is not; on the other hand, it determines what kinds of values can be assigned to it. Thus, if one
is told thatP is a two place predicate and thata, b andc are terms, then one knows thatPab is a formula and that
neitherPa noPcba is. At the same time, one knows thatP is to be assigned a set of ordered pairs in the model.

A similar effect can be achieved with a slight enrichment of subcategorization frames. Subcategorization
frames were introduced into constituency grammar by Chomsky (1965 ch. 2.3.4; 2.4). They greatly simplified the
constituency rules by having individual lexical items specify their complements. Subcategorization frames effec-
tively formalized and generalized the lexicographical practice of distinguishing between transitive and intransitive
verbs. Because the subcategorization frame of a word is silent about those constituents which are not its comple-
ments, the subcategorization frame of a verb does not specify that it has an argument corresponding to the subject
of the clause in which it might occur. Argument frames will have this specification. As a result, argument frames
will fulfill the same functions in constituency grammar which predicate adicity fulfills in classical quantificational
logic. It specifies the arguments associated with the word and it constrains the value assigned to it in a model to
those relations with a corresponding arity, or degree of therelation. For example, a verb such asto die, which
is intransitive, and thereby corresponding to a monadic predicate of classical quantification logic, takes only one
argument and is assigned a unary relation (a subset of the model’s domain), while a verb such asto admire, which
is transitive, and thereby corresponding to a dyadic predicate, takes two arguments and is assigned a binary rela-
tion (a set of ordered pairs of members of the model’s domain). Such a specification accounts for the contrasts in
acceptability of the sentences given below.

(7.1) Bill died.
(7.2) *Bill died Fred.

(8.1) *Mary admires.
(8.2) Mary admires Bill.

Moreover, just as each predicate of a given adicity is interpreted by a relation of a corresponding arity, so
each relational word is interpreted by a relation of a corresponding arity. It is crucial that this correspondance be
properly established. To see why, consider this example from model theory. LetR be a binary predicate and let
a andb be individual constants. LetM be a model whose domain is{1, 2, 3} and whose interpretation function
i assigns1 to a, 2 to b and the set of ordered pairs{〈1, 2〉, 〈2, 3〉, 〈3, 1〉} to R. The clause of the truth definition
of an atomic formula guarantees the following:Rab is true if and only if〈i(a), i(b)〉 ∈ i(R). It is crucial that
the order of appearance of the individual constantsa andb in the formulaRab be correlated with the ordered pair
〈i(a), i(b)〉, not with the ordered pair〈i(b), i(a)〉. As the reader can easily verify, the ordered pair〈i(a), i(b)〉 is a
member ofi(R), but not the ordered pair〈i(b), i(a)〉.

The situation in natural language is, of course, much more complex that the situation in logical notation. I
do not have the space to elaborate on all the detail. I shall, therefore, concentrate on just the essentials required
for the task at hand. I shall signal the argument frame using the notation of ordered sets. Often, the arguments
are restricted. This is well known in the case of verbs and nouns and adjectives derived from them. Indeed, these
restrictions are at the heart of P ān. ini’s grammar, theAs.t.ādhȳaȳı, where they are known askāraka, or factors; and
they have been widely exploited in contemporary linguistictheory, variously namedvalencesor thematic roles.

FISSCL-5

Proc. of FISSCL, Paris, October 29-31, 2007

Typical valences include those recognized by P ān. ini: agent, patient, beneficiary, sourceandlocation.
It is important to stress that valences do not exhaust the kinds of restrictions which can be placed on arguments

to lexical items. Underived relational nouns (for example,friend, cousin, neighbor, colleague) and underived
relational adjectives (for example,equivalent, opposite, proud, domesticand local) have arguments, but their
arguments are not plausibly said to be restricted by the usual valences associated with verbs.

Following Bhartr.hari’s insight, I shall assume that non-constituent (asamartha) compounds appear when the
subordinate constituent in the compound has an argument which is correlated with an inflected lexical item external
to the compound. A survey of the cases mentioned above, as culled from the classical literature, shows that such
is the case. Indeed, for the most part, the subordinate constituent is a deverbal noun or adjective, requiring an NP
complement and often associating with it a particular valence.

Let us consider the case of a non-constituent compoundsnigdha-dr. s. t.yā, cited above. Recall that it is preceded
by the pronountasȳam, which is construed with the wordsnigdha, itself subordinate todr.s. t.yā. The past passive
participlesnigdhahas two arguments, one of which must appear in the seventh case.

NP3 〈 〉

NP7 N3 〈LC〉

N7 A 〈AG,LC〉 N3 〈AG,PT〉

tasy ām
her

snigdha
fixed

〈AG,LC〉 dr.s.t.y ā
gaze

〈AG,PT〉

(9)

"
""

b
bb

"
""

b
bb

(whereAG denotesagent, PT denotespatientandLC denoteslocation). The idea is that the argument frames are
passed, as it were, up the tree. It is thelocation argument which is passed up to the top node of the tree for the
compound.4

This contrasts with the situation in English. Sanskrit, as we just saw, permits unsaturated arguments associated
with a non-head to be transmitted to the mother node, while English prohibits non-heads from having unsaturated
arguments. Thus, for example, an expression such as (3.2) isprohibited in English. The reason is that, although
one of the arguments associated witheating, namely the one whose valence isagentis saturated by the nounshark,
the other argument associated witheating, namely the one whose valence ispatient is not.5

NP

N PP

A 〈AG,PT〉 N P NP

N

eating〈AG,PT〉 shark of men

(10)

�
��

Q
QQ

�� SS�
��

Q
QQ

4This compound is also an exocentric compound. This aspect ofthe compound is not being addressed h ere.
5Evidence that the argument with the valence ofPATIENT is relevant comes from the acceptability of (3.1), namelyman-eating shark.

FISSCL-6

Proc. of FISSCL, Paris, October 29-31, 2007

This treatment of non-constituent (asamartha) compounds extends to exocentric (bahuvr̄ıhi) compounds. Let
us consider the following exocentric (bahuvr̄ıhi) compounds in Sanskrit:

(11.1) SK 830
Compound: pr āpt ātithih. gr āmah.
Analysis: (pr āpta≺atithih. -B)

reached-guest-ed
gr āmah.
village

Paraphrase [RC atithayah.
guest

pr āpt āh.
reached

yam
which

]

sah.
that

pr āpt ātithih. gr āmah.
village

the village which guests have reached

(11.2) SK 830
Compound: ūd.harathah. anad.v ān
Analysis: (ūd.ha≺rathah.)-B

drawn-cart-ed
anad.v ān

bull
Paraphrase: [RC rathah.

cart
ūd.hah.
bull

yena
by which

]

sah.
that

ūd.harathah. anad.v ān
bull

the bull by which a cart is drawn

(11.3) SK 830
Compound: upahr.tapaśuh. puruśah.
Analysis: (upahr.ta≺paśuh.)-B

offered-cattle-ed
puruśah.

man
Paraphrase: [RC paśuh.

cattle
upahr.tah.
offered

yasmai
to whom

]

sah.
that

upahr.ta-paśuh. puruśah.
man

the man to whom cattle is offered

(11.4) SK 830
Compound: uddhr.taudanan ā sthal̄ ı
Analysis: (uddhr.ta≺odanan ā)-B

removed-rice
sthal̄ ı
vessel

Paraphrase: [RC odanah.
rice

uddhr.tah.
removed

yasy āh.
from which

]

s ā
that

uddhr.taudanan ā sthal̄ ı
vessel

the vessel from which rice has been removed

FISSCL-7

Proc. of FISSCL, Paris, October 29-31, 2007

(11.5) SK 830
Compound: p ı̄t āmbarah. purus.ah.
Analysis: (p ı̄ta≺ambarah.)-B

yellow-garment-ed
purus.ah.

man
Paraphrase: [RC p ı̄tam

yellow
ambaram
garment

yasya
whose

]

sah.
that

p ı̄t āmbarah. puruśah.
man

the man whose garments are yellow

In the paraphrase and translation of Sanskrit exocentric (bahuvr̄ıhi) compounds, the relative pronoun of the para-
phrasing relative clause may be construed with either the subject (11.5) or the predicate (all other examples). Thus,
the relative pronoun is construed with the predicate in sucha way as to express the goal in the first example, the
agent in the second, the beneficiary in the third, the source in the fourth, and the location in the last.

Indeed, as noted by Coulson (1976, p. 121), Sanskrit exocentric (bahuvr̄ıhi) compounds are ambiguous be-
tween two readings: on one, the denotation of the lexical item modified by the exocentric compound is interpreted
as the possessor of what is denoted by the final constituent ofthe compound; and on the other, it is interpreted as
bearing a valence of any unsaturated argument associated with the initial constituent of the compound.

(12) Coulson 1976, p. 121
Compound: dr.s.t.akas.t. ā str ı̄
Analysis: (dr.s.t.a-kas.t. ā)-B

witnessed-misfortune-ed
str ı̄

woman
Reading 1: a woman whose misfortune has been witnessed

(i.e., a woman whose misfortune people have witnessed)
Reading 2: a woman by whom misfortune has been witnessed

(i.e., a woman who has witnessed misfortune)

Moreover, an exocentric compound has available a reading corresponding to each of the unsaturated arguments
associated with its initial constituent.

(13) Coulson 1976, p. 121
Compound: datt ādar ā rajñ ı̄
Analysis: (datta- ādar ā)-B

given-respect-ed
rajñ ı̄

queen
Reading 1: a queen by whom respect is given

(i.e, a respectful queen)
Reading 2: a queen to whom respect is given

(i.e., a respected queen)

Here emerges the difference between English and Sanskrit exocentric compounds alluded to above. Notice
that, of the six examples, only the fifth allows an acceptableEnglish calque: *reached-guested, *drawn-carted,
*offered-cattledand *removed-vesseledbut yellow-garmented. At the same time, while an English exocentric
compound is paraphrasable with a relative clause, yet the relative pronoun of the paraphrase, “whose”, is construed
only with the subject of the relative clause, which corresponds to the final constituent of the compound paraphrased.
Thus,mean-spiritedis paraphrasable asone whose spirit is mean, level-headedasone whose head is level, and
long-leggedasone whose legs are long.

English and Sanskrit exocentric (bahuvr̄ıhi) compounds differ as follows: the English adjectival suffix-eddoes
not permit the transmission of unsaturated arguments of an exocentric compound’s initial constituent; whereas the

FISSCL-8

Proc. of FISSCL, Paris, October 29-31, 2007

Sanskrit adjectival suffix B does permit the transmission ofsuch arguments.

The foregoing differences between compounds in English andSanskrit suggests the following hypothesis:
the argument frame of initial constituents in lexical structure, in particular, in compound, percolate in Sanskrit
but does not in English. This hypothesis accounts for two facts: first, that, in Sanskrit, unsaturated arguments
associated with the initial constituent of an exocentric compound can be assigned to the lexical item the compound
modifies, whereas in English they cannot be; second, that Sanskrit productively forms non-constituent (asamartha)
compounds whereas English does not. Let us see how this account works.

Each adjective has at least one argument which is saturated either by the noun it modifies or by the subject
noun phrase of which it is predicated. This is illustrated below, for modification both within phrasal structure and
within compound structure.

NP 〈 〉

NAP 〈 〉

A 〈 〉

yellow 〈 〉 garment

(14.1)

�� @@

N 〈 〉

NA 〈 〉

yellow 〈 〉 garment

(14.2)

�� @@

Now, both the -edsuffix in English and the -B suffix in Sanskrit create adjectives from nouns. This means that
they create an argument. Associated with the resulting argument is the valencepossessor(annotatedPS). When
the English suffix is applied to a simple noun likebeard, one obtains the following:

A 〈PS〉

A 〈PS〉N

beard -ed〈PS〉

(15)

�� @@

And when the resulting form modifies a word such asman, the resulting interpretation isman who possesses a
beard. Combining what has been said so far, one obtains an analysisfor both the Sanskrit compound in (11.5) and
its English claque translation.

Moreover, the foregoing analysis shows precisely where Sanskrit and English differ. A morphologically com-
plex English word accepts unsaturated arguments associated only with its head. Whereas, a morphologically
complex Sanskrit word accepts the unsaturated arguments either of its head or of its head’s sister. When an ex-
ocentric compound has no unsaturated argument other than the one associated with its possessive suffix, then its
English and Sanskrit versions are equally acceptable.

FISSCL-9

Proc. of FISSCL, Paris, October 29-31, 2007

A 〈PS〉

N 〈 〉 A 〈PS〉

NA 〈 〉

p ı̄ta〈 〉
yellow 〈 〉

ambara
garment

-B 〈PS〉
-ed〈PS〉

(16)

�
�

Q
Q

�
�

Q
Q

In this example, the argument associated withyellow (p̄ıta) is saturated bygarment(ambara), and so the complex
word yellow garment(p̄ıtāmbara) has no unsaturated argument. The suffixation of -ed (-B) to yellow garment
(p̄ıtāmbara) creates an unsaturated argument with an associated valence, namely that of possessor (PS).

The situation is otherwise when the left-hand constituent of an exocentric compound has an unsaturated argu-
ment. Sanskrit permits unsaturated arguments associated with either a head and a non-head to be transmitted to the
mother node; and, depending on which unsaturated argument is transmitted, the compound receives one or another
interpretation. Thus, in the compound in (12) the unsaturated argument associated with the entire compound may
have associated with it either the valueAG or the valuePS (annotated below as〈AG\PS〉).

A 〈AG\PS〉

N 〈AG〉 A 〈PS〉

NA 〈AG,PT〉

dr.s.t.a 〈AG,PT〉 kas.t.a -B 〈PS〉

(17)

�
�

Q
Q

�
�

Q
Q

In constrast, English prohibits any unsaturated argumentsfrom being associated with a non-head, with the conse-
quence that the English counterparts to (9) are ungrammatical (annotated below as〈∗〉).

A 〈∗AG〉

N 〈AG〉 A 〈PS〉

NA 〈AG,PT〉

witnessed〈AG,PT〉 misfortune -ed〈PS〉

(18)

�
�

Q
Q

�
�

Q
Q

3. CONCLUSION

Above, we examined two kinds of compounds in Classical Sanskrit, non-constituent (asamartha) compounds and
exocentric (bahuvr̄ıhi) compounds. The former compounds were considered problematic by the Indian grammati-

FISSCL-10

Proc. of FISSCL, Paris, October 29-31, 2007

cal tradition for P ān. ini’s grammar, theAs.t.ādhȳaȳı. An insight due to Bhartr.hari shows how they can be satisfacto-
rily analyzed. This insight was recast using the notion of anargument frame, a generalization of subcategorization
frame. A bonus of this solution is that it provides insight into well-know properties of the exocentric compounds
of Classical Sanskrit, properties which exocentric compounds in English do not have.

4. WORKS CITED OR CONSULTED

Aklujkar, Ashok 1992Sanskrit: An Easy Introduction to an Enchanting Language. Richmond, British Columbia
(Canada): Sv ādhy āya Publications.
Apte, V āman Shivar ām 1885The Student’s Guide to Sanskrit Composition. A Treatise on Sanskrit Syntax for Use
of Schools and Colleges. Poona, India: Lokasamgraha Press, 24th edition (1960).
Apte, V āman Shivar ām 1890The Practical Sanskrit-English Dictionary. Poona, India: Prasad Prakashan, revised
and enlarged edition (1957).
Bhat.t.oji D ı̄ks.ita Siddh̄anta-Kaumud̄ı. Sanskrit Edition and English Translation: Vasu,Śr ı̄śa Chandra (ed) (tr) 1906.
Bloomfield, Leonard 1933Language. New York, New York: Holt.
Boose, Emery and Gary Tubb 1981Rough Draft of Portions of a Handbook Designed to Aid Students in the Use
of Sanskrit Commentaries. Unpublished mss., Harvard University.
Cardona, George 1988Pān. ini: His Work and Its Traditions. Background and Introduction. New Delhi: Motilal
Banarsidass.
Chomsky, Noam 1957Syntactic Structures. The Hague, The Netherlands: Mouton and Company (Janua Lin-
guarum: Series Minor n. 4).
Chomsky, Noam 1965Aspects of the Theory of Syntax. Cambridge, Massachusetts: The MIT Press.
Coulson, Michael 1976Sanskrit: An Introduction to the Classical Language. London, England: Hodder and
Stoughton (Teach Yourself Books).
Deshpande, Madhav M 1985Ellipsis and Syntactic Overlapping: Current Issues in Pān. inian Syntactic Theory.
Poona, India: Bhandarkar Oriental Research Institute (Post-graduate and Research Department Series no. 24).
Di Sciullo, Anna Maria and Edwin Williams 1987On the Definition of Word. Cambridge, Massachusetts: The
MIT Press.
Gillon, Brendan S. 1993 Bhartr.hari’s solution to the problem ofasamarthacompounds.Asiatische Studien/Études
Asiatiques: v. 47, n. 1, pp. 117–133.
Gillon, Brendan S. 1995 Autonomy of word formation: evidence from Classical Sanskrit.Indian Linguistics: v.
56, n. 1-4, pp. 15–52.
Godabole, N. B. (ed) 1933́Sakuntal̄a. Bombay: Nirn.aya S āgara Press (revised by W. L. Pan.ś ı̄kar)
Harris, Zellig 1946 ‘From Morpheme to Utterance’.Language: v. 22, pp. 161-183.
Hockett, Charles F. 1954 ‘Two Models of Grammatical Description’. Word: v. 10, pp.210-231.
Iyer, K. A. Subramania (ed) 1973Vākyapad̄ıya of Bhartr.hari with the Prak̄ırn. akaprak̄aśa of Helar̄aja. Poona:
Deccan College.
Iyyar, Sesh ādri (ed) 1896Mālavikāgnimitra. Poona, India: publisher unknown.
Kielhorn, F. (ed) 1880The Vȳakaran. a Mah̄abh̄as.ya of Patãnjali. Poona, India: Bhandarkar Oriental Research
Institute (4th edition revised by R. N. Dandekar 1985).
Kiparsky, Paul 1983Word Formation and the Lexicon. In: Ingemann, Frances (ed) 1983 ??-??.
Malvania, Dalsukhabhai (ed) 1955Dūrveka Miśra’s Dharmottaraprad̄ıpa. Patna, India: Kashiprasad Jayaswal
Research Institute (Tibetan Sanskrit Works Series: v. 2). 2nd edition revised, 1971.
Manaster-Ramer, Alexis and Kac, Michael B. 1990Linguistics and Philosophy: v. 13, pp. 325–362.
Marchand, Hans 1969The Categories and Types of Present-Day English Word-Formation. A Synchronic-Diachronic
Approach. Munich: C. H. Beck’sche Verlagsbuchhandlung. (reprint)
Monier-Williams, Monier 1899A Sanskrit-English Dictionary. Oxford, England: Oxford University Press.

FISSCL-11

Proc. of FISSCL, Paris, October 29-31, 2007

Selkirk, Elizabeth O. 1982.The Syntax of Words. Cambridge, Massachusetts: The MIT Press.
Speijer, J. S. 1886Sanskrit Syntax. Leiden, The Netherlands: E. J. Brill.
Vasu, Śr ı̄śa Chandra (ed) (tr) 1906The Siddh̄anta Kaumud̄ı of Bhat.t.oji Diks. ı̄ta. Allahabad, India: The P ān. ini
Office. Reprint: Delhi, India: Motilal Banarsidass, 1962.
Wells, Rulon S. 1947 ‘Immediate Constituents’Language: v. 23, pp. 81-117.
Whitney, William Dwight 1881Sanskrit Grammar: Including both the Classical language, and the older Dialects,
of Veda and Brahmana. Cambridge, Massachusetts: Harvard University Press, 2ndedition (1889), 11th reprint
(1967).
Williams, Edwin 1981 On the Notions “Lexically Related” and“Head of a Word”.Linguistic Inquiry12, 245-274.

FISSCL-12

FROM PĀN. INIAN SANDHI TO FINITE STATE CALCULUS

Malcolm D. Hyman
Max Planck Institute for the History of Science,

Berlin

ABSTRACT
The most authoritative description of the morpho-
phonemic rules that apply at word boundaries (exter-
nal sandhi) in Sanskrit is by the great grammarian P ā-
n. ini (fl. 5th c. B. C. E.). These rules are stated for-
mally in P ān. ini’s grammar, theAs.t.ādhȳaȳı ‘group of
eight chapters’. The present paper summarizes P ān. i-
ni’s handling of sandhi, his notational conventions, and
formal properties of his theory. An XML vocabulary
for expressing P ān. ini’s morphophonemic rules is then
introduced, in which his rules for sandhi have been
expressed. Although P ān. ini’s notation potentially ex-
ceeds a finite state grammar in power, individual rules
do not rewrite their own output, and thus they may
be automatically translated into a rule cascade from
which a finite state transducer can be compiled.

1. SANDHI IN SANSKRIT

Sanskrit possesses a set of morphophonemic rules
(both obligatory and optional) that apply at morpheme
and word boundaries (the latter are also termedpada
boundaries). The former are calledinternal sandhi(<
sam. dhi ‘putting together’); the latter,external sandhi.
This paper only considers external sandhi. Sandhi
rules involve processes such as assimilation and vowel
coalescence. Some examples of external sandhi are:
na asti> nāsti ‘is not’, tat ca> tac ca‘and this’,etat
hi > etad dhi‘for this’, devas api> devo ’pi ‘also a
god’.

This work has been supported by NSF grant IIS-0535207.
Any opinions, findings, and conclusions or recommendationsex-
pressed are those of the author and do not necessarily reflectthe
views of the National Science Foundation. The paper has bene-
fited from comments by Peter M. Scharf and by four anonymous
referees.

The symbol〈’〉 (avagraha) does not represent a phoneme but
is an orthographic convention to indicate the prodelision of an ini-
tial a-.

2. SANDHI IN Pān. ini’S GRAMMAR

P ān. ini’s As.t.ādhȳaȳı is a complete grammar of San-
skrit, covering phonology, morphology, syntax, se-
mantics, and even pragmatics. It contains about 4000
rules (termedsūtra, literally ‘thread’), divided be-
tween eight chapters (termedadhȳaya). Conciseness
(lāghava) is a fundamental principle in P ān. ini’s for-
mulation of carefully interrelated rules (Smith, 1992).
Rules are eitheroperational (i. e. they specify a par-
ticular linguistic operation, orkārya) or interpretive
(i. e. they define the scope of operational rules). Rules
may be either obligatory or optional.

A brief review of some well-known aspects of P ā-
n. ini’s grammar is in order. The operational rules rel-
evant to sandhi specify that a substituend (sth̄anin) is
replaced by a substituens (ādeśa) in a given context
(Cardona, 1965b, 308). Rules are written using meta-
linguistic case conventions, so that the substituend is
marked as genitive, the substituens as nominative, the
left context as ablative (tasm̄at), and the right context
as locative (tasmin). For instance:

8.4.62 jhayo ho ’nyatarasȳam
jhaY-ABL h-GEN optionally

This rule specifies that (optionally) a homogenous
sound replacesh when preceded by a sound termed
jhaY — i. e. an oral stop (Sharma, 2003, 783–784).
P ān. ini uses abbreviatory labels (termedpratyāhāra)
to describe phonological classes. These labels are
interpreted in the context of an ancillary text of the

The traditional classification of rules is more fine-grained
and comprisessam. jñ ā (technical terms),paribh ās. ā (interpre-
tive rules), vidhi (operational rules),niyama (restriction rules),
pratis.edha(negation rules),atideśa(extension rules),vibh ās. ā(op-
tional rules),nip ātana(ad hoc rules),adhik āra(heading rules)
(Sharma, 1987, 89).

Proc. of FISSCL, Paris, October 29-31, 2007

As.t.ādhȳaȳı, the Śivas̄utras, which enumerate a cata-
log of sounds (varn. asam̄amn̄aya) in fourteen classes
(Cardona, 1969, 6):

1. a i u N.

2. r� l�K

3. e oṄ

4. ai au C

5. h y v r T.

6. l N.

7. ñ m ṅ n. n M

8. jh bhÑ

9. gh d.h dh S.

10. j b g d. d Ś

11. kh ph ch t.h th c t. t
V

12. k p Y

13. ś s. s R

14. h L

The final items (indicated here by capital letters) are
markers termedit ‘indicatory sound’ and are not con-
sidered to belong to the class. Apratyāhāra formed
from a sound and anit denotes all sounds in the se-
quence beginning with the specified sound and ending
with the last sound before theit. ThusjhaYdenotes the
class of all sounds fromjh throughp (before theit Y):
jh, bh, gh, d. h, dh, j, b, g, d. , d, kh, ph, ch, t.h, th, c t., t,
k, p(i. e. all oral stops). S ūtra 8.4.62, as printed above,
is by itself both elliptic and uninterpretable. Ellipses
in s ūtras are completed by supplying elements that oc-
cur in earlier s ūtras; the device by which omitted ele-
ments can be inferred from preceding s ūtras is termed
anuvr�tti ‘recurrence’ (Sharma, 1987, 60). It will be
noticed that no substituens is specified in 8.4.62; the
substituenssavarnah. ‘homogenous sound-NOM’ (Car-
dona, 1965a) is supplied byanuvr�tti from s ūtra 8.4.58
anusv̄arasya yayi parasavarn. ah. . Still, the device of
anuvr�tti is insufficient to specify the exact sound that
must be introduced as a substituens. It is here that in-
terpretive rules play a role. S ūtra 8.4.62 must be inter-
preted in the light of theparibhās. ā ‘interpretive rule’
1.1.50sth̄ane ’ntaratamah. , which specifies that a sub-
stituens must be maximally similar (sc. in articulatory
place and manner) to the substituend (Sharma, 1987,
126). Thus the substituens in 8.4.62 will always be
aspirated, sinceh (the substituend) is aspirated: e. g.

The vowela added after a consonant makes thepraty āh āra
pronounceable.

vāg hasati(< vāk hasati‘a voice laughs’ by 8.2.39)>
vāgghasati.

A second example further illustrates the principles
already discussed:

8.4.63 śaś cho ’t.i
ś-GEN ch-NOM aT. -LOC

Here jhayah. ‘ jhaY-ABL ’ and anyatarasȳam ‘option-
ally’ are supplied byanuvr�tti from the preceding s ūtra
(8.4.62). The rule specifies that (optionally)ś is re-
placed bychwhen it is preceded by an oral stop (jhaY)
and followed by a vowel or semivowel (aT.).

Rules specific to external sandhi are found in the
third quarter (pāda) of the eighthadhȳaya. A num-
ber of rules are common to both internal and external
sandhi, and rules relevant for external sandhi are also
found in the firstpāda of the sixthadhȳaya and the
fourth pādaof the eighthadhȳaya.

3. AN XML ENCODING FOR P ān. iniAN RULES

An encoding based on Extensible Markup Language
(XML) has been chosen for expressing P ān. inian rules
in machine-readable form. The XML vocabulary con-
tains an element<rule>, with required attributes
source (the substituend) andtarget (the sub-
stituens) and optional attributeslcontext (the left
context) andrcontext (the right context). The
values of source, lcontext, and rcontext
are specified as Perl-compatible regular expressions
(PCREs) (Wall et al., 2000). Sanskrit sounds are
indicated in an encoding known as SLP1 (Sanskrit
Library Phonological 1) (Scharf and Hyman, 2007).
An encoding such as Unicode is not used, since Uni-
code representswritten charactersrather thanspeech
sounds(Unicode Consortium, 2006). The SLP1 en-
coding facilitates linguistic processing by representing
each Sanskrit sound with a single symbol (see fig. 1).
The use of Unicode would be undesirable here, since
(1) there would not be a one-to-one correspondence

Note that Sanskrith represents a voiced glottal fricative [H].
So-called “regular expressions” in programming languages

such as Perl include extended features such as pattern memory
that exceed the power of regular languages (see§4); for exam-
ple, it is possible to write a regular expression that matches theαα

language, that is, the language of all reduplicated strings. Thus
PCREs arenot, in the formal sense, regular expressions at all.

Figure 1 is a simplified overview of SLP1. It does not show
symbols for accents, certain nasalized sounds, or sounds peculiar
to the Vedic language.

FISSCL-14

Proc. of FISSCL, Paris, October 29-31, 2007

between character and sound, and (2) Sanskrit is com-
monly written in a number of different scripts (De-
van āgar ı̄, Tamil, Romanization, etc.).

The following is the XML representation of s ūtra
8.3.23mo ’nusv̄arah. , which specifies that apada-final
m is replaced by the nasal soundanusv̄ara (m.) when
followed by a consonant (Sharma, 2003, 628):
<rule source="m" target="M"

rcontext="[@(wb)][@(hal)]"
ref="A.8.3.23"/>

This rule employs a syntactic extension used for
macros.The expression@(name) is replaced by the
value of a defined macroname. Macros are defined
with an XML element<macro> and may be defined
recursively. Macro expansion is performed immedi-
ately after parsing the XML file, before any further
processing. Here thercontext attribute references
two macros: @(wb) is expanded to characters that
indicate a word boundary, and@(hal) is expanded
to the characters representing the sounds of thepra-
tyāhāra haL (i. e. all consonants). Macros are a syn-
tactic convenience that allows rules to be easier to
read (and closer to P ān. ini’s original formulation); one
might equally spell out in full all characters represent-
ing sounds in a phonological class. The square brack-
ets belong to the PCRE syntax and indicate that any
character contained between them should be matched;
that is,[abc] matches ana, b, orc.

In thetarget two additional syntactic facilities al-
low for rules to be expressed in a way that is close to
P ān. ini’s formulation. These facilities are termedmap-
pings and functions. The following rule illustrates a
mapping:
<rule source="h"

target="%(voicedaspirate($1))"
lcontext="([@(Jay)])[@(wb)]"
optional="yes"
ref="A.8.4.62"/>

This s ūtra has been discussed earlier. The left con-
text matches ajhaY followed by a word boundary.
The parentheses (part of PCRE syntax) specify that
the contents (thejhaY) be stored in pattern mem-
ory. Strings stored in pattern memory are avail-
able for subsequent reference: the pattern matched
by the first parenthesized group may be recalled with
$1; the second, with$2, etc. (only nine pattern
memory variables are available). The pattern mem-
ory variable $1 is referenced in thetarget at-
tribute. The rule specifies that anh, when preceded

A a
a

A;a ā
A

I i
i

IR̄ı
I

o u
u

‘o ū
U

‘x r�f ‘X r̄�F
‘w l�x

‘W l̄�X
O; e

e
Oe; ai

E
A;ea o

o
A;Ea au

O

*

k, k
k

K,a kh
K

g,a g
g

;G,a gh
G

.z, ṅ
N

..c,a c
c

C, ch
C

.j,a j
j

J,a jh
J

V,a ñ
Y

f, t.
w

F, t.h
W

.q, d.
q

Q, d.h
Q

:N,a n.
R

t,a t
t

T,a th
T

d, d
d

;D,a dh
D

n,a n
n

:p,a p
p

:P, ph
P

b,a b
b

B,a bh
B

m,a m
m

y,a y
y

.=,r
r

l, l
l

v,a v
v

Z,a ś
S

:S,a s.
z

.s,a s
s

h, h
h

* anusv āra =M; visarga =H

Figure 1: A partial overview of the SLP1 encoding

by a pada-final jhaY, is replaced by the result of
performing thevoicedaspirate mapping on the
matchedjhaY. The mapping syntax takes the form
%(name(input)), wherename is the name of a
mapping, andinput is the input symbol for the map-
ping. A mapping is defined with a<mapping> ele-
ment, which has as children one or more<map> ele-
ments. The mappingvoicedaspirate is defined
thus:

<mapping name="voicedaspirate">
<map from="@(jaS)" to="@(Jaz)"/>

</mapping>

This mapping translates the voiced oral stops denoted
by thepratyāhāra jaŚ (j, b, g, d. , d) to the equivalent
aspirated voiced oral stops denoted by thepratyāhāra
jhaS. (jh, bh, gh, d. h, dh). In the case that the input
symbol to a mapping is not contained infrom, the
mapping is equivalent to the identity function.

S ūtra 6.1.87̄ad gun. ah. illustrates the use of a func-
tion:

<rule source="[@(a)][@(wb)]([@(ik)])"
target="!(gunate($1))"
ref="A.6.1.87"/>

Thesource matches either shorta or long ā (by the
definition of the macroa), a word boundary, and then
the pratyāhāra iK (a simple vowel other thana or ā).
The macroik is defined:

FISSCL-15

Proc. of FISSCL, Paris, October 29-31, 2007

<macro name="ik"
value="@(i)@(u)@(f)@(x)"
ref="A.1.1.71"/>

and depends on the macro definitions:
<macro name="i" value="iI"

ref="A.1.1.69"/>
<macro name="u" value="uU"

ref="A.1.1.69"/>
<macro name="f" value="fF"

ref="A.1.1.69"/>
<macro name="x" value="xX"

ref="A.1.1.69"/>

TheiK is stored in pattern memory, and the substituend
(a-varn. a) is replaced by the output of calling the func-
tion gunate on the storediK. A function is defined
with an element<function>, which has as children
one or more<rule> elements. These are context-
free rules that typically make use of mappings in the
target. Thusgunate is defined:
<function name="gunate">

<rule source="[@(a)@(i)@(u)]"
target="%(guna($1))"/>

<rule source="[@(f)@(x)]"
target="%(guna($1))

%(semivowel($1))"/>
</function>

Two mappings are invoked here:
<mapping name="guna"

ref="A.1.1.2">
<map from="@(a)" to="a"/>
<map from="@(i)" to="e"/>
<map from="@(u)" to="o"/>
<map from="@(f)" to="a"/>
<map from="@(x)" to="a"/>

</mapping>

<mapping name="semivowel"
ref="A.6.1.77">

<map from="@(i)" to="y"/>
<map from="@(u)" to="v"/>
<map from="@(f)" to="r"/>
<map from="@(x)" to="l"/>

</mapping>

The mappingguna maps simple vowels such asa-
varn. a (which includes shorta and longā) to theirgun. a
equivalent. The termgun. a is defined by the technical
rule (sam. jñā) (Sharma, 1987, 102) 1.1.2adėn gun. ah.
‘a andeṄ [are] gun. a’ (the pratyāhāra eṄ = {e, o}).
The mappingsemivowel maps those vowels that
possess homorganic semivowels to the corresponding
semivowels. The functiongunate, if the input isa-,
i-, or u-varn. a, outputs the correspondinggun. a vowel;
if the input isr�- or l�-varn. a, it outputs the correspond-
ing gun. a vowel (in this case,a) concatenated with the

homorganic semivowel (eitherr or l). The domain of
gunate is {a, ā, i, ı̄, u, ū, r�, r̄�, l�, l̄�} and its range is{a,
e, o, ar, al}.

4. REGULAR LANGUAGES AND REGULAR
RELATIONS

First, it is necessary to define aregular language.Let
Σ denote a finite alphabet andΣǫ denoteΣ ∪ {ǫ}
(whereǫ is the empty string).{e} is a regular language
wheree ∈ Σǫ, and the empty language∅ is a regular
language. Given thatL1, L2, andL are regular lan-
guages, additional regular languages may be defined
by three operations (under which they are closed):
concatenation (L1·L2 = {xy|x ∈ L1, y ∈ L2), union
(L1∪L2), and Kleene closure (L∗ = ∪∞i=0

Li) (Kaplan
and Kay, 1994, 338).

Regular relationsare defined in the same fashion.
An n-relation is a set whose members are ordered n-
tuples (Beesley and Karttunen, 2003, 20). Then{e}
is a regular n-relation wheree ∈ Σǫ × . . . × Σǫ (∅
is also a regular n-relation). Given thatR1, R2, and
R are regular n-relations, additional regular n-relations
may be defined by three operations (under which they
are closed): n-way concatenation (R1·R2 = {xy|x ∈
R1, y ∈ R2), union (R1 ∪R2), and n-way Kleene clo-
sure (R∗ = ∪∞i=0

Ri).

5. FINITE STATE AUTOMATA AND
REGULAR GRAMMARS

A finite state automatonis a mathematical model that
corresponds to a regular language or regular relation
(Beesley and Karttunen, 2003, 44). A simple finite
state automaton corresponds to a regular language and
is a quintuple〈S,Σ, δ, s0, F 〉, whereS is a finite set
of states,Σ the alphabet of the automaton,δ is a tran-
sition function that mapsS × Σǫ to 2S , s0 ∈ S is a
single initial state, andF ⊆ S is a set of final states
(Aho et al., 1988, 114). A finite state automaton that
corresponds to a regular relation is termed afinite state
transducer(FST) and can be defined as a quintuple
〈S,Σ × . . . × Σ, δ, s0, F 〉, with δ being a transition
function that mapsS × Σǫ × . . . × Σǫ to 2S (Kaplan
and Kay, 1994, 340).

A regular (or finite) grammar describes a regular
language and is equivalent to a finite state automaton.
In a regular grammar, all production rules have a sin-
gle non-terminal on the left-hand side, and either a sin-

FISSCL-16

Proc. of FISSCL, Paris, October 29-31, 2007

regular

context free

context sensitive

recursively enumerable

Figure 2: The Chomsky hierarchy of languages
(after Prusinkiewicz and Lindenmayer
(1990, 3))

gle terminal or a combination of a single non-terminal
and a single terminal on the right-hand side. That is,
all rules are of the formA → a, A → aB (for a right
regular grammar), orA→ Ba (for a left regular gram-
mar), whereA andB are single non-terminals, anda is
a single terminal (orǫ). A regular grammar is the least
powerful type of grammar in the Chomsky hierarchy
(see fig. 2) (Chomsky, 1956). A context free grammar
describes a context free language, a context sensitive
grammar describes a context sensitive language, and
an unrestricted grammar describes a recursively enu-
merable language. The hierarchy is characterized by
proper inclusion, so that every regular language is con-
text free, every context free language is context sensi-
tive, etc. (but not every context free language is regular,
etc.). A regular grammar cannot describe a context free
language such as{anbn|1 ≤ n}, which consists of the
strings{ab, aabb, aaabbb, aaaabbbb . . .} (Kaplan and
Kay, 1994, 346).

Since P ān. inian external sandhi can be modeled us-
ing finite state grammar, it is highly desirable to pro-
vide a finite state implementation, which is computa-
tionally efficient. Finite state machines are closed un-
der composition, and thus sandhi operations may be
composed with other finite state operations to yield a
single network.

6. FROM REWRITE RULES TO REGULAR
GRAMMARS

A string rewriting system is a system that can trans-
form a given string by means of rewrite rules. A
rewrite rule specifies that a substringx1. . . xn is re-

placed by a substringy1. . . ym: x1. . . xn → y1. . . ym,
wherexi, yi ∈ Σ (andΣ is a finite alphabet). Rewrite
rules used in phonology have the general form

φ→ ψ/λ ρ

Such a rule specifies thatφ is replaced byψ when it
is preceded byλ and followed byρ. Traditionally,
the phonological component of a natural-language
grammar has been conceived of as an ordered se-
ries of rewrite rules (sometimes termed acascade)
W1, . . . ,Wn (Chomsky and Halle, 1968, 20). Most
phonological rules, however, can be expressed as reg-
ular relations (Beesley and Karttunen, 2003, 33). But
if a rewrite rule is allowed to rewrite a substring in-
troduced by an earlier application of the same rule,
the rewrite rule exceeds the power of regular relations
(Kaplan and Kay, 1994, 346). In practice, few such
rules are posited by phonologists. Although certain
marginal morphophonological phenomena (such as ar-
bitrary center embedding and unlimited reduplication)
exceed finite state power, the vast majority of (mor-
pho)phonological processes may be expressed by reg-
ular relations (Beesley and Karttunen, 2003, 419).

Since phonological rewrite rules can normally (with
the provisos discussed above) be reexpressed as regu-
lar relations, they may be modeled as finite state trans-
ducers (FSTs). FSTs are closed under composition;
thus if T1 andT2 are FSTs, application of the com-
posed transducerT1 ◦ T2 to a stringS is equivalent to
applyingT1 to S and applyingT2 to the output ofT1:

T1 ◦ T2(S) = T2(T1(S))

So if a cascade of rewrite rulesW1, . . . ,Wn can be
expressed as a series of FSTsT1, . . . , Tn, there is a
single FSTT that is a compositionT1 ◦ . . . ◦ Tn and
is equivalent to the cascadeW1, . . . ,Wn (Kaplan and
Kay, 1994, 364).G = T1◦. . .◦Tn constitutes a regular
grammar. Efficient algorithms are known for compil-
ing a cascade of rewrite rules into an FST (Mohri and
Sproat, 1996).

7. AN FST FOR Pān. iniAN SANDHI

The XML formalism for expressing P ān. inian rules in
§3 contains a number of devices; it is not immediately
evident how rules employing these devices might be
compiled into an FST. A rule compiler, however, is de-
scribed here that translates P ān. inian rules expressed in

FISSCL-17

Proc. of FISSCL, Paris, October 29-31, 2007

the XML formalism into rewrite rules that can be au-
tomatically compiled into an FST using standard algo-
rithms.

It is useful to begin with an instance of P ān. inian
sandhi derivation of the stringdevo ’pi< devas api
‘also a god’.

FORM SŪTRA

devas api

deva$ api 8.2.66
deva#u api 6.1.113
dev!(gunate(u)) api 6.1.87
devo ’pi 6.1.109

S ūtra 8.2.66 replaces apada-final swith rU (here sym-
bolized by$). S ūtra 6.1.113 replacespada-final rU
with u preceded by a boundary marker (#) when the
next pada begins witha. S ūtra 6.1.87 has been dis-
cussed above. S ūtra 6.1.109 replacespada-initial a
with avagraha(represented by’ in SLP1) when the
previouspadaends in thepratyāhāra eṄ (i. e. eor o).

Although the PCREs in the XML format exceed the
power of regular relations, and the implementation of
mappings and functions is not obvious in a regular
grammar, the rule compiler mentioned above is able
to produce a cascade of rewrite rules that may be ef-
ficiently compiled into an FST. A consequence of the
rule compilation strategy is that a single P ān. inian rule
may be represented as several rewrite rules. Where a
rule makes use of pattern memory, which can contain
n possible values, the rule is expanded inton rewrite
rules. Mappings and functions are automatically ap-
plied where they occur inψ (the substituens).

The following cascade represents the four s ūtras ex-
emplified above:

s→ $ / (| #)
$→ #u / a (|#)a
(a|A)(| #)(a|A) → a
(a|A)(| #)(i|I) → e
(a|A)(| #)(u|U) → o
(a|A)(| #)(f|F) → ar
(a|A)(| #)(x|X) → al
a→ ’ / (e|o)(| #)

Although avagraha is not a phoneme, it may be conceived
of linguistically as a “trace” left after the deletion ofa-. For this
reason, it is represented in the SLP1 phonological coding.

s0 s1 s2
e, o

?

?

e, o

, #

e, o

?, a:’

Figure 3: An FST for s ūtra 6.1.109

Here the notation(x|y|z) expresses alternation; the
rule matches eitherx, or y, or z. The symbol rep-
resents a space character; the symbol# represents a
boundary that has been inserted by a rule.

These rules may be efficiently compiled into FSTs.
An FST encoding the final rule is shown in fig. 3. In
this transducer,s0 is the initial state and doubly-circled
states are the members ofF , the set of final states. The
graphical representation of the FST has been simpli-
fied, so that symbols that are accepted on transition
from si to sj share an arc betweensi andsj (in this
case, the symbols are separated by commas). The nota-
tionx : y indicates the symbols on the upper and lower
tapes of the transducer, respectively. If the transducer
reads input from the upper tape and writes output to the
lower tape,x : y indicates that ifx is read on the up-
per tape,y is written on the lower tape. If the symbols
on the upper and lower tapes are the same, a shorthand
notation is used; thusx is equivalent tox : x. The spe-
cial symbol? indicates thatanysymbol is matched on
either the upper or lower tape.

Since it is possible to translate each rule in the above
cascade into an FST, and FSTs are closed under com-
position, it is possible to compose a single FST that im-
plements the portion of P ān. ini’s sandhi represented by
the rules in the cascade above. A compiler developed
by the author will be capable of compiling the entirety
of P ān. ini’s sandhi rules into a single FST. The FST is
then converted to Java code using a toolkit written by
the author. Compilation of the generated source code
yields binary code that may be run portably using any
Java Virtual Machine (JVM) (Lindholm and Yellin,
1999). Alternatively, for improved performance, the
Java code may be compiled into native machine code
using the GNU Compiler for Java (gcj).

FISSCL-18

Proc. of FISSCL, Paris, October 29-31, 2007

8. IMPLICATIONS

While one of the guiding principles of P ān. ini’s gram-
mar is conciseness (lāghava), a computational imple-
mentation poses other demands, such as tractability
and efficiency. P ān. ini’s rules are formulated in terms
of classes based on distinctive features and must be
construed with the aid of ‘interpretive’ (paribhās. ā)
rules, technical terms (sam. jñā), and other theoretical
apparatus.

However desirable the mathematical properties of a
regular grammar may be, a grammar stated in such
terms is at odds with P ān. ini’s principles. Rather, it
hearkens back to thevikāra system employed by ear-
lier linguistic thinkers, in which individual segments
are the target of specific rules (Cardona, 1965b, 311).

By way of contrast, P ān. ini states a rule econom-
ically in terms of the sound classes enumerated in
the Śivas̄utras. Thus 8.4.41s. t.unā s. t.uh. specifies the
retroflexion of ans or dental stop either (1) before a
pada-final -s. or (2) pada-finally before at.U (i. e. a
retroflex stop).

With a little less economy, we can represent P ān. ini’s
rule by two rules in XML:
<rule source="[s@(tu)]"

target="%(retroflex($1))"
lcontext="z[@(wb)]"
ref="A.8.4.41"/>

<rule source="[s@(tu)]"
target="%(retroflex($1)"
rcontext="[@(wb)][@(wu)]"
ref="A.8.4.41"/>

Thepratyāhāra tU stands for the dental stop series{t,
th, d, dh, n}. We apply the retroflex mapping:
<mapping name="retroflex">

<map from="s" to "z"/>
<map from="@(tu)" to "@(wu)"/>

</mapping>

The effect is to change a single phonological feature
across an entire class; sounds with a dental place of
articulation (dantya) are replaced by sounds with a
retroflex articulation (mūrdhanya). In specifying such
a replacement, P ān. ini makes use of the principle of
sāvarn. ya ‘homogeneity of sounds’. So the substituend
chosen is that closest to the original—with respect to
voice (ghos.avat / aghos.a), aspiration (mah̄aprān. a / al-
paprān. a), and nasality (sānun̄asika / niranun̄asika).
Thust → t., th→ t.h, d→ d. , and so on; yet P ān. ini does
not need explicitly (and repetitively) to specify the ex-

act segments substituted. In this way, theAs.t.ādhȳaȳı
avoids the bias (“segmentalism”) that places the linear
segment at the center of phonological theory—a bias
from which contemporary linguistics is beginning to
distance itself (Aronoff, 1992).

The finite state approach discussed in this paper,
however, is limited to describing the relations between
strings (sequences of segments). As far as the com-
putational model is concerned, individual symbols are
atomic, and no class relations between the symbols ex-
ist. The goal in this study has been to develop an in-
termediate representational structure, based on XML,
that can faithfully encode some of the linguistically
significant aspects of a portion of P ān. ini’s grammar
(the rules involved in external sandhi) and at the same
can be automatically translated into an efficient com-
putational implementation.

9. APPENDIX: CORE RULES FOR EXTERNAL
SANDHI

The following is a list of modeledvidhi rules (8.3.4:
adhik̄ara, 8.4.44:pratis.edha) for external sandhi. No
account is taken here ofpragr�hya rules that specify
certain sounds as exempt from sandhi (since these
rules refer to morphosyntactic categories). Various op-
tional rules are not listed.

FISSCL-19

Proc. of FISSCL, Paris, October 29-31, 2007

6.1.73 che ca
6.1.74 āṅmāṅośca
6.1.132 etattadoh. sulopo ’koranãnsam̄ase hali
8.2.66 sasajus.o ruh.
8.2.68 ahan
6.1.113 ato roraplut̄adaplute
6.1.114 haśi ca
6.1.101 akah. savarn. e d̄ırghah.
6.1.88 vr�ddhireci
6.1.87 ādgun. ah.
6.1.77 iko yan. aci
6.1.109 eṅah. pad̄antādati
6.1.78 eco ’yav̄ayāvah.
8.2.39 jhalām. jaśo ’nte
8.3.4 anun̄asik̄atparo ’nusv̄arah.
8.3.7 naśchavyapras̄́an
8.3.14 ro ri
8.3.17 bhobhagoaghoap̄urvasya yo ’śi
8.3.15 kharavas̄anayorvisarjan̄ıyah.
8.3.19 lopah. śākalyasya
8.3.20 oto ḡargyasya
8.3.23 mo ’nusv̄arah.
8.3.31 śi tuk
8.3.32 ṅamo hrasv̄adaci ṅamun. nityam
8.3.34 visarjan̄ıyasya sah.
8.3.35 śarpare visarjan̄ıyah.
8.3.40 namaspurasorgatyoh.
8.4.40 stoh. ścun̄a ścuh.
8.4.44 śāt
8.4.41 s. t.unā s. t.uh.
8.4.45 yaro ’nun̄asike ’nun̄asiko v̄a
8.4.53 jhalām. jaśjhaśi
8.4.55 khari ca
8.4.60 torli
8.4.62 jhayo ho ’nyatarasȳam
8.4.63 śaścho ’t.i
8.4.65 jharo jhari savarn. e

10. REFERENCES

Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ull-
man. 1988.Compilers: Principles, Techniques, and
Tools. Addison-Wesley, Reading, MA.

Mark Aronoff. 1992. Segmentalism in linguis-
tics: The alphabetic basis of phonological theory.
In Pamela Downing, Susan D. Lima, and Michael
Noonan, editors,The Linguistics of Literacy, vol-

ume 21 ofTypological Studies in Language, pages
71–82. John Benjamins, Amsterdam.

Kenneth R. Beesley and Lauri Karttunen. 2003.Fi-
nite State Morphology. CSLI, Stanford, CA.

Akshar Bharati, Vineet Chaitanya, and Rajeev San-
gal. 1996. Natural Language Processing: A
Paninian Perspective. Prentice-Hall of India, New
Delhi.

George Cardona. 1965a. On P ān. ini’s morpho-
phonemic principles.Language, 41(2):225–237.

George Cardona. 1965b. On translating and formal-
izing P ān. inian rules. Journal of the Oriental Insti-
tute, Baroda, 14:306–314.

George Cardona. 1969. Studies in Indian gram-
marians: I. The method of description reflected in
theŚivas ūtras.Transactions of the American Philo-
sophical Society, 59(1):3–48.

Noam Chomsky and Morris Halle. 1968.The Sound
Pattern of English. MIT Press, Cambridge, MA.

Noam Chomsky. 1956. Three models for the de-
scription of language.IEEE Transactions on Infor-
mation Theory, 2(3):113–124.

Ronald M. Kaplan and Matin Kay. 1994. Regu-
lar models of phonological rule systems.Computa-
tional Linguistics, 20(3):332–378.

Tim Lindholm and Frank Yellin. 1999.The JavaTM

Virtual Machine Specification. Addison-Wesley,
Reading, MA, 2d edition.

Mehryar Mohri and Richard Sproat. 1996. An effi-
cient compiler for weighted rewrite rules. In34th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 231–238, Santa Cruz, CA.
ACL.

Prezemyslaw Prusinkiewicz and Aristid Linden-
mayer. 1990. The Algorithmic Beauty of Plants.
Springer, New York.

Peter M. Scharf and Malcolm D. Hyman. 2007.
Linguistic issues in encoding Sanskrit. Unpublished
manuscript, Brown University.

FISSCL-20

Proc. of FISSCL, Paris, October 29-31, 2007

Rama Nath Sharma. 1987.The As.t.ādhȳaȳı of
Pān. ini, Vol. 1: Introduction to the As.t.ādhȳaȳı as a
Grammatical Device. Munshiram Manoharlal, New
Delhi.

Rama Nath Sharma. 2003.The As.t.ādhȳaȳı of
Pān. ini, Vol. 6: English Translation of Adhȳayas
Seven and Eight with Sanskrit Text, Translitera-
tion, Word-Boundary, Anuvr. tti, Vr. tti, Explanatory
Notes, Derivational History of Examples, and In-
dices. Munshiram Manoharlal, New Delhi.

Henry Smith. 1992. Brevity in P ān. ini. Journal of
Indian Philosophy, 20:133–147.

Unicode Consortium. 2006.The Unicode Standard,
Version 5.0. Addison-Wesley, Boston.

Larry Wall, Tom Christiansen, and John Orwant.
2000. Programming Perl. O’Reilly, Sebastapol,
CA, 3d edition.

FISSCL-21

Proceedings of the First International Symposium on Sanskrit Computational Linguistics, Paris,France, October 29-31, 2007

FISSCL-22

Analysis of Sanskrit Text: Parsing and Semantic Relations

Pawan Goyal
Electrical Engineering,

IIT Kanpur,
208016, UP,

India
pawangee@iitk.ac.in

Vipul Arora
Electrical Engineering,

IIT Kanpur,
208016, UP,

India
vipular@iitk.ac.in

Laxmidhar Behera
Electrical Engineering,

IIT Kanpur,
208016, UP,

India
lbehera@iitk.ac.in

ABSTRACT
In this paper, we are presenting our work towards
building a dependency parser for Sanskrit language
that uses deterministic finite automata(DFA) for mor-
phological analysis and ’utsarga apavaada’ approach
for relation analysis. A computational grammar based
on the framework of Panini is being developed. A lin-
guistic generalization for Verbal and Nominal database
has been made and declensions are given the form of
DFA. Verbal database for all the class of verbs have
been completed for this part. Given a Sanskrit text,
the parser identifies the root words and gives the de-
pendency relations based on semantic constraints. The
proposed Sanskrit parser is able to create semantic nets
for many classes of Sanskrit paragraphs(an� QC�d).
The parser is taking care of both external and internal
sandhi in the Sanskrit words.

1. INTRODUCTION

Parsing is the ”de-linearization” of linguistic input;
that is, the use of grammatical rules and other knowl-
edge sources to determine the functions of words in the
input sentence. Getting an efficient and unambiguous
parse of natural languages has been a subject of wide
interest in the field of artificial intelligence over past
50 years. Instead of providing substantial amount of
information manually, there has been a shift towards
using Machine Learning algorithms in every possible
NLP task. Among the most important elements in
this toolkit are state machines, formal rule systems,
logic, as well as probability theory and other machine
learning tools. These models, in turn, lend themselves
to a small number of algorithms from well-known

computational paradigms. Among the most important
of these are state space search algorithms, (Bonet,
2001) and dynamic programming algorithms (Ferro,
1998). The need for unambiguous representation has
lead to a great effort in stochastic parsing (Ivanov,
2000).

Most of the research work has been done for En-
glish sentences but to transmit the ideas with great
precision and mathematical rigor, we need a language
that incorporates the features of artificial intelligence.
Briggs (Briggs,1985) demonstrated in his article
the salient features of Sanskrit language that can
make it serve as an Artificial language. Although
computational processing of Sanskrit language has
been reported in the literature (Huet, 2005) with some
computational toolkits (Huet, 2002), and there is work
going on towards developing mathematical model and
dependency grammar of Sanskrit(Huet, 2006), the
proposed Sanskrit parser is being developed for using
Sanskrit language as Indian networking language
(INL). The utility of advanced techniques such as
stochastic parsing and machine learning in designing
a Sanskrit parser need to be verified.

We have used deterministic finite automata for
morphological analysis. We have identified the basic
linguistic framework which shall facilitate the effec-
tive emergence of Sanskrit as INL. To achieve this
goal, a computational grammar has been developed
for the processing of Sanskrit language. Sanskrit
has a rich system of inflectional endings (vibhakti).
The computational grammar described here takes the

Proc. of FISSCL, Paris, October 29-31, 2007

concept of vibhakti and karaka relations from Panini
framework and uses them to get an efficient parse for
Sanskrit Text. The grammar is written in ’utsarga
apavaada’ approach i.e rules are arranged in several
layers each layer forming the exception of previous
one. We are working towards encoding Paninian
grammar to get a robust analysis of Sanskrit sentence.
The paninian framework has been successfully applied
to Indian languages for dependency grammars (San-
gal, 1993), where constraint based parsing is used and
mapping between karaka and vibhakti is via a TAM
(tense, aspect, modality) tabel. We have made rules
from Panini grammar for the mapping. Also, finite
state automata is used for the analysis instead of finite
state transducers. The problem is that the Paninian
grammar is generative and it is just not straight for-
ward to invert the grammar to get a Sanskrit analyzer,
i.e. its difficult to rely just on Panini sutras to build
the analyzer. There will be lot of ambiguities (due to
options given in Panini sutras, as well as a single word
having multiple analysis). We need therefore a hybrid
scheme which should take some statistical methods
for the analysis of sentence. Probabilistic approach
is currently not integrated within the parser since we
don’t have a Sanskrit corpus to work with, but we
hope that in very near future, we will be able to apply
the statistical methods.

The paper is arranged as follows. Section 2 ex-
plains in a nutshell the computational processing of
any Sanskrit corpus. We have codified the Nominal
and Verb forms in Sanskrit in a directly computable
form by the computer. Our algorithm for processing
these texts and preparing Sanskrit lexicon databases
are presented in section 3. The complete parser has
been described in section 4. We have discussed here
how we are going to do morphological analysis and
hence relation analysis. Results have been enumerated
in section 5. Discussion, conclusions and future work
follow in section 6.

2. A STANDARD METHOD FOR ANALYZING
SANSKRIT TEXT

The basic framework for analyzing the Sanskrit cor-
pus is discussed in this section. For every word in a
given sentence, machine/computer is supposed to iden-
tify the word in following structure. < Word ><

Base >< Form >< Relation >.
The structure contains the root word (<Base>) and
its form <attributes of word> and relation with the
verb/action or subject of that sentence. This analogy is
done so as to completely disambiguate the meaning of
word in the context.

2.1. <Word>

Given a sentence, the parser identifies a singular word
and processes it using the guidelines laid out in this
section. If it is a compound word, then the compound
word with sE�D has to be undone. For example:ndFmAgQCt̂=ndFm̂+aAgQCt̂.

2.2. <Base>

The base is the original, uninflected form of the word.
Finite verb forms, other simple words and compound
words are each indicated differently. For Simple
words: The computer activates the DFA on the ISCII
code (ISCII,1999) of the Sanskrit text. For compound
words: The computer shows the nesting of internal and
externalsmAs using nested parentheses. UndosE�D
changes between the component words.

2.3. <Form>

The <Form> of a word contains the information re-
garding declensions for nominals and state for verbs.

• For undeclined words, just write u in this column.

• For nouns, write first.m, f or n to indicate the gen-
der, followed by a number for the case (1 through
7, or 8 for vocative), and s, d or p to indicate sin-
gular, dual or plural.

• For adjectives and pronouns, write first a, fol-
lowed by the indications, as for nouns, of gen-
der (skipping this for pronouns unmarked for gen-
der), case and number.

• For verbs, in one column indicate the class (gZ)
and voice. Show the class by a number from
1 to 11. Follow this (in the same column) by
’1’ for parasmaipada, ’2’ for ätmanepada and ’3’
for ubhayapada. For finite verb forms, give the
root. Then (in the same column) show the tense
as given in Table 3. Then show the inflection in
the same column, if there is one. For finite forms,

FISSCL-24

Proc. of FISSCL, Paris, October 29-31, 2007

Table 1: Codes for
<Form>

pa/ passive
ca/ causative
de/ desiderative
fr/ frequentative

Table 2: Codes for Finite
Forms, showing the Per-
son and the Number

1 þTm p� zq
2 m�ym p� zq
3 u�m p� zq
s singular
d dual
p plural

Table 3: Codes for Fi-
nite verb Forms, show-
ing the Tense

pr present
if imperfect
iv imperative
op optative
ao aorist
pe perfect
fu future
f2 second future
be benedictive
co conditional

show the person and number with the codes given
in Table 2. For participles, show the case and
number as for nouns.

2.4. <Relation>

The relation between the different words in a sentence
is worked out using the information obtained from
the analysis done using the guidelines laid out in
the previous subsections. First write down a period
in this column followed by a number indicating the
order of the word in the sentence. The words in each
sentence should be numbered sequentially, even when
a sentence ends before the end of a text or extends
over more than one text. Then, in the same column,
indicate the kind of connection the word has to the
sentence, using the codes given in table 4.

Then, in the same column, give the number of
the other word in the sentence to which this word is
connected as modifier or otherwise. The relation set
given above is not exhaustive. All the 6 karakas are
defined as in relation to the verb.

Table 4: Codes for<Relation>

v main verb
vs subordinate verb
s subject(of the sentence or a subordinate clause)
o object(of a verb or preposition)
g destination(gati) of a verb of motion
a Adjective
n Noun modifying another in apposition
d predicate nominative
m other modifier
p Preposition
c Conjunction
u vocative, with no syntactic connection
q quoted sentence or phrase
r definition of a word or phrase(in a commentary)

3. ALGORITHM FOR SANSKRIT RULEBASE

In the section to follow in this paper, we shall explain
two of the procedures/algorithms that we have devel-
oped for the computational analysis of Sanskrit. Com-
bined with these algorithms, we have arrived at the
skeletal base upon which many different modules for
Sanskrit linguistic analysis such as: relations,sE�D,smAs can be worked out.

3.1. Sanskrit Rule Database

Every natural language must have a representation,
which is directly computable. To achieve this we
have encoded the grammatical rules and designed
the syntactic structure for both the nominal and ver-
bal words in Sanskrit. Let us illustrate this structure
for both the nouns and the verbs with an example each .

Noun:-Any noun has three genders: Mascu-
line,Feminine and Neuter. So also the noun has three
numbers: Singular, Dual and Plural. Again there ex-
ists eight classification in each number: Nominative,
Accusative, Imperative, Dative, Ablative, Genitive,
Locative and Vocative. Interestingly these express
nearly all the relations between words in a sentence .

In Sanskrit language, every noun is deflected
following a general rule based on the ending alphabet
such asakArA�t. For example,rAm is in class

FISSCL-25

Proc. of FISSCL, Paris, October 29-31, 2007akArA�t which ends witha(a). Such classifications
are given in Table 5. Each of these have different
inflections depending upon which gender they cor-
respond to. ThusakArA�t has different masculine
and neuter declensions,aAkArA�t has masculine
and feminine declensions,ikArA�t has masculine,
feminine and neuter declensions. We have then
encoded each of the declensions into ISCII code, so
that it can be easily computable in the computer using
the algorithm that we have developed for the linguistic
analysis of any word .

Table 5: attributes of the declension for noun
Class∗ Caseη GenderζakArA�t(1) dkArA�t(14) k�A
(1) p� E¥R(1)aAkArA�t(2) DkArA�t(15) km
(2) -/FElR(2)ikArA�t(3) nkArA�t(16) krZ(3) np�\skElR(3)IkArA�t(4) nkArA�t(171) sMþdAn(4) Number@ukArA�t(5) pkArA�t(18) apAdAn(5) ekv
n(1)UkArA�t(6) BkArA�t(19) sMb�D(6) E�v
n(2)�kArA�t(7) rkArA�t(20) aEDkrZ(7) bh� v
n(3)e�kArA�t(8) vkArA�t(21) sMboDn(8)aokArA�t(9) fkArA�t(22)aOkArA�t(10) qkArA�t(23)
kArA�t(11) skArA�t(24)jkArA�t(12) hkArA�t(25)tkArA�t(13)

Let us illustrate this structure for the noun with
an example . ForakArA�t, masculine, nominative,
singular declension:

This is encoded in the following syntax:
(163{1∗, 1η , 1ζ , 1@}) .

Where 163 is the ISCII code of the declension
(Table 6). The four 1’s in the curly brackets represent
Class, Case, Gender and Number respectively (Table
5) .

Table 6: Noun examplea Masculine
Singular(ekv
n)

Endings ISCII Code
Nominative , 163

Pronouns:-According to Paninian grammar and

Kale, (Kale) Sanskrit has 35 pronouns which are:sv
 ,Ev� , uB , uBy , itr , itm , a�y , a�ytr ,itr , (vt̂ , (v , n�m , ym , Eym , p� v
 , pr ,avr , dE"Z , upr , aDr , -v , a�tr , (yd̂ ,etd̂ , itd̂ , adŝ , ek , E� , y� 	md , Bvt̂ andEkm̂ .

We have classified each of these pronouns into 9
classes: Personal, Demonstrative, Relative, Indefini-
tive, Correlative, Reciprocal and Possessive. Each
of these pronouns have different inflectional forms
arising from different declensions of the masculine
and feminine form. We have codified the pronouns in
a form similar to that of nouns .

Adjectives:- Adjectives are dealt in the same
manner as nouns. The repetition of the linguistic
morphology is avoided .

Verbs:- A Verb in a sentence in Sanskrit expresses
an action that is enhanced by a set of auxiliaries”;
these auxiliaries being the nominals that have been
discussed previously .

The meaning of the verb is said to be bothvyapara

(action, activity, cause), andphala (fruit, result, ef-
fect). Syntactically, its meaning is invariably linked
with the meaning of the verb ”to do”. In our analysis
of Verbs, we have found that they are classified into
11 classes(gZ, Table 7). While coding the endings,
each class is subdivided according to ”iV̂” knowl-
edge,s�V̂ , aEnV̂ and v�V̂; each of which is again
sub-classified as into 3 sub-classes asaA(mn�pd ,pr-m{pd anduBypd, which we have denoted as pada.
Each verb sub-class again has 10lakaaras , which is
used to express the tense of the action. Again, depend-
ing upon the form of the sentence, again a division of
form ask�
vAQy , km
vAQy andBAvvAQy has been
done. This classification has been referred to as voice.
This structure has been explained in Table 7.

.
Let us express the structure via an example for<vAEdgZ , pr-m{pd, Present Tense, First person,
Singular. This is encoded in the following syntax:
(219(194{1∗ , 1γ , 2η, 1ζ , 1λ, 1@, 1δ})).
Where 219194 is the ISCII code of the endings (Table
8). The numbers in curly brackets represent class, ”it”,

FISSCL-26

Proc. of FISSCL, Paris, October 29-31, 2007

Table 7: attributes of the declension for verb

Class∗ itγ padaη Tenseζ<vAEdgZ(1) s�V̂(1) aA(mn�pd(1) lV̂(1)adAEdgZ(2) aEnV̂(2) pr-m{pd(2) lR(2)EdvAEdgZ(3) v�V̂(3) uBypd(3) l� V(3)-vAEdgZ(4) loV̂(4)t� dAEdgZ(5) EvEDElR(5)zYAEdgZ(6) aAfF
ElR(6)tnAEdgZ(7) ElV̂(7)��AEdgZ(8) l� V̂(8)
� rAEdgZ(9) l� R(9)j� ho(yAEdgZ(10) l� R(10)k�X̂vAEdgZ(11)

V oiceλ Person@ Numberδk�
vAQy(1) þTm p� zq(1) ekv
n(1)km
vAQy(2) m�ym p� zq(2) E�v
n(2)BAvvAQy(3) u�m p� zq(3) bh� v
n(3)

pada, tense, voice, person and number respectively
(Table 7).

Table 8: Verb example

PRESENT
Singular(ekv
n)

Endings ISCII Code
First Et 219194

Separate database files for nominals and verbs have
been maintained, which can be populated as more and
more Sanskrit corpsuses are mined for data. The San-
skrit rule base is prepared using the ”Sanskrit Database
Maker” developed during this work.

3.2. Deterministic Finite Automata: Sanskrit Rule
Base

We have used deterministic finite automata (DFA)
(Hopcraft, 2002) to compute the Sanskrit rule base,
which we developed as described in section III A. Be-
fore we explain the DFA, let us define it.
A deterministic finite automaton consists of:

1. A finite set of states, often denoted Q.

2. A finite set of input symbols, often denoted S.

3. A transition function that takes as arguments a

state and input symbol and returns a state, often
commonly denoted d.

4. A start state, one of the states in Q, denoted q0.

5. A set offinal or accepting states F. The set F is
a subset of Q.

Thus, we can define a DFA in this ”five-tuple” nota-
tion: A = (Q,S, d, q0, F). With this short discussion
of the DFA, we shall proceed to the DFA structure
for our Sanskrit Rule Base. Since we are represent-
ing any word by ISCII codes that range from 161 to
234, we have effectively 74 input states. In the nota-
tion given below, we are representing the character set
by {C0, C1, . . . , C73}, whereCi is the character cor-
responding to the ISCII code161 + i. Thus, if we de-
fine a DFA =M(Q,S, d, q0, F) for our Sanskrit Rule
Database, each of the DFA entities are as follows:

• Q = {q0, qC0, qC1, . . . , qC73} × {0, 1}. 0 repre-
sents that the state is not a final state and 1 tells
that the state is a final state.

•
∑

= {C0, C1, . . . , C73}

• δ((qx, a), Y) = δ(qY , a)or δ(qY , b) a,bǫ{0, 1}

• q0 =< q0, 0 >

• F ⊂ {qC0, qC1, . . . , qC73} × {1}

In this work, we have made our DFA in a matrix form
with each row representing the behavior of a particular
state. In a given row, there are 74 columns and entries
in a particular column of the corresponding row store
the state we will finally move to on receiving the par-
ticular input corresponding to the column. In addition,
each row carries the information whether or not it is a
final state.
For example:D[32][5] = 36 conveys that in the DFA
matrix D[i][j], in 32nd state, if input isC5, we will
move to state no. 36 .(To be noted:C5 is the character
corresponding to the ISCII code 166.).

In the graph below, we are giving an example how
the DFA will look as a tree structure. The particular
graph is constructed for the verb declensions for the
class<vAEdgZ. The pada ispr-m{pd and the tense
is present tense. The search in this DFA will be as
follows:- If the first ending of the input corresponds to
one of the state 163, 195 or 219, we will move ahead

FISSCL-27

Proc. of FISSCL, Paris, October 29-31, 2007

in the DFA otherwise the input is not found in this
tree. On getting a match, the search will continue in
the matched branch. .

START

163

219

195

163212 163212218

163204 163204218

195

194

219215

219204

219204218

219194

219194232

219194232198

FINAL

219

163

195

212

215

204

194

218

218

232 198232

218

204

195
194

218

Figure 1: DFA tree obtained for<vAEdgZ pr-m{pd
present tense.

In general, the search in the DFA is done as follows
(We take the example of searching forBvT, in the
DFA tree constructed above:-

• Firstly, an input word is given as the input to the
user interface in Devanagari format .

• The word is changed to its equivalent ISCII code
(203212195163 in this case).

• The automaton reads the forms in the reverse or-
der to lemmatize them. In our DFA, we give one
by one the last three digits of the ISCII code till
the matching is there.

– Start state: 000

– input to DFA: 163, i.e characterC2.

– In the DFA matrix we will check the entry
D[0][2]. If it is zero, no match is there for
this entry and hence no match either for the
word. Else we will move to the state speci-
fied by the entry.

– In this case, we get the entry corresponding
to state ”163”. That means it is either an in-
termediate state or a final state. From the
graph, it is visible that the tree accepts 163
just after the start state. Also, it is not a final
state. Now we will have 195 (i.e.C34) as
next input and34th column of the row cor-
responding to state 232 will be checked and
the search continues till no match.

– Final match will be 163195.

• The final match will be checked for being eligible
for a final state which is true in this case. We can
verify it from the graph given.

• Remaining part of the word is sent to database
engine of program to verify and to get attributes.
The word corresponding to the stem, Devanagari
equivalent of 203212, that isBv) will be sent to
database.

• If both criteria are fulfilled (final state match and
stem match through database), we will get the
root word and its category (verb in this case). The
attributes such as tense, form, voice, class, pada,
person, number are coded in the final state itself
according to the notations given in table 5 and 7.
All the possible attributes are stored and it is left
up to the final algorithm to come up with the most
appropriate solution.

Let me just explain how we have obtained the de-
terministic finite automata. Clearly, the states are
obtained via input symbols. Ambiguity remains in
{0, 1}. If the state is not a final state at all, it is declared
as intermediate state without any ambiguity to be con-
sidered for non-deterministic. When the state is a fi-
nal state, for example considergQCEt andgEm	yEt.
When we encounterEt in gQCEt, we get the root asgQC. (Of course, we have to add thehl�t and go
throughDA(vAd�f getting gm̂ as root verb.) But ingEm	yEt, Et is not a final state. It seems at this point
that we could have obtained a non-deterministic finite

FISSCL-28

Proc. of FISSCL, Paris, October 29-31, 2007

automaton. We have resolved the problem by accept-
ing the following facts:

1. Final state can be intermediate state too but not
the other way round.

2. Our algorithm doesn’t stop just as it gets to a final
state, it goes to the highest possible match, checks
it for being final state and, in case it isn’t, it back-
tracks and stops at the optimal match which satis-
fies the two criteria as told in the algorithm (final
state match and stem match through database).

There might be another ambiguity too, for example,
in rAmA<yAm̂, aA<yAm̂ is a final state but it refers tokrZ, sMþdAn, andapAdAn karaka. This seems to be
non-deterministic. We have avoided this problem by
suitably defining the states. Final state represents all
possibilities merged in a single state. It is up to the
algorithm to come up with the unique solution. There
could be situation where longest match is not the right
assignment. To deal with this, all other possible solu-
tions are also stacked and are substituted (if needed)
when we go for relation analysis. For example, let us
take the wordsnA<yAm̂. We assume thatsnA, snAEB
andsnA<yA are valid root words. Our algorithm will
choosesnA as root word along with the attributes (3
possibilities here). But the other solutions are also
stacked in decreasing order of the match found. It is
discussed in the relation analysis, how we deal with
this situation.

4. ALGORITHM FOR SANSKRIT PARSER

The parser takes as input a Sanskrit sentence and using
the Sanskrit Rule base from the DFA Analyzer, ana-
lyzes each word of the sentence and returns the base
form of each word along with their attributes. This in-
formation is analyzed to get relations among the words
in the sentence using If-Then rules and then output a
complete dependency parse. The parser incorporates
Panini framework of dependency structure. Due to
rich case endings of Sanskrit words, we are using mor-
phological analyzer. To demonstrate the Morpholog-
ical Analyzer that we have designed for subsequent
Sanskrit sentence parsing, the following resources are
built:

• Nominals rule database (contains entries for
nouns and pronouns declensions)

• Verb rule database (contains entries for 10 classes
of verbs)

• Particle database (contains word entries)

Now using these resources, the morphological ana-
lyzer, which parses the complete sentences of the text
is designed.

4.1. Morphological Analysis

In this step, the Sanskrit sentence is taken as input in
Devanagari format and converted into ISCII format.
Each word is then analyzed using the DFA Tree that
is returned by the above block. Following along any
path from start to final of this DFA tree returns us the
root word of the word that we wish to analyze, along
with its attributes. While evaluating the Sanskrit words
in the sentence, we have followed these steps for com-
putation:

1. First, a left-right parsing to separate out the words
in the sentence is done.

2. Second, each word is checked against the Sanskrit
rules base represented by the DFA trees in the fol-
lowing precedence order: Each word is checked
first against the avavya database, next in pronoun,
then verb and lastly in the noun tree.

The reason for such a precedence ordering is primarily
due to the fact thatavavya andpronouns are limited
in number compared to the verbs, and verbs are in-turn
limited compared to the infinite number of nouns that
exist in Sanskrit.

4.1.1. Sandhi Module

In the analysis, we have done, the main problem was
with words having external sandhi. Unless we are able
to decompose the word into its constituents, we are
unable to get the morph of the word. So, a rulebase
sandhi analyzer is developed which works on the fol-
lowing principles.

• Given an input word, it checks at each junction
for the possibility of sandhi.

• If it finds the junction, it breaks the word into pos-
sible parts and sends the first part in the DFA.

– If it finds a match, it sends the second part in
DFA.

FISSCL-29

Proc. of FISSCL, Paris, October 29-31, 2007

∗ If no match, it recursively calls the
sandhi module (For the possibility of
multiple sandhi in a single word).

∗ If match is found, terminates and returns
the words.

– If no match, it goes to the next junction.

The rules for decomposing the words are taken
from Panini grammar. The search proceeds entirely
backwards on the syllabic string. Emphasis is given
on minimum possible breaks of the string, avoiding
overgeneration.
Panini grammar has separate sections for vowel sandhi
as well as consonant sandhi. Also, there is specifica-
tion of visarga sandhi. Below, we are describing the
simplified rules for undoing sandhi.

Vowel Sandhi:- We have considereddFG
 s\ED,vÆ E� s\ED, g� Z s\ED, yZ s\ED and ayAEd s\ED in

vowels. (pr!p , p� v
!p andþk� EtBAv are not taken
into account yet.)

1. dFG
 s\ED:- If the junction is themA/A correspond-
ing to aA, I, U or �, it is a candidate fordFG
s\ED. The algorithm for an example wordBAn� dy
is explained.

• We assume that we don’t get any match at
the junctionaA afterB.

• The junctionU is a candidate fordFG
 s\ED.
So the following breaks are made:
1. BAn� + udy, 2. BAn� + Udy, 3. BAn� +udy,
4. BAn� + Udy. For each break, the left hand
word is first sent to DFA and only if it is a
valid word, right word will be sent. In this
case, first solution comes to be the correct
one.

2. vÆ E� s\ED:- In this case, the junction ise� ,aO. The
corresponding break-ups are:

• e�:- (a oraA) + (e or e�).

• aO:- (a oraA) + (ao oraO).
The algorithm remains the same as told in previ-
ous case.

3. g� Z s\ED:- In this case, the junction ise ,ao ,ar̂ ,al̂. The corresponding break-
ups are:

• e:- (a oraA) + (i or I).

• ao:- (a oraA) + (u orU).

• ar̂:- (a oraA) + (� or�).

• al̂:- (a oraA) + (� or�).

The algorithm follows the same guidelines.

4. yZ s\ED:- In this case, the junction is a ha-
lanta followed byy ,v ,r ,l. The corresponding
break-ups are:

• halanta +y:- (i or I) + a.

• halanta +v:- (u orU) + a.

• halanta +r:- (� or�) + a.

• halanta +l:- (� or�) + a.

The algorithm follows the same guidelines.

5. ayAEd s\ED:- In this case, the junction isaŷ ,aAŷ , av̂ , aAv̂ followed by any vowel. The
corresponding break-ups are:

• aŷ + vowel:- e + vowel. (same vowel is
retained.)

• aAŷ + vowel:-e� + vowel.

• av̂ + vowel:-ao + vowel.

• aAv̂ + vowel:-aO + vowel.

The algorithm follows the same guidelines.

Consonant Sandhi:- For dealing with consonant
sandhi, we have defined some groups taking clue from
panini grammar such ask� ,
� , V� , t� , p� each of
which have 5 consonants which are similar in the sense
of place of pronunciation. Also, there is a specific sig-
nificance of first, second, third etc. letter of a specific
string. The following ruleset is made:

• Define string s1, with first five entries ofV� and
6th entry asq. Also, define s2, with first five en-
tries oft� and 6th entry ass. The rule says,
The junction isa+ halanta + c, and the breakup
will be b + halanta andc, wherea, c ǫ s1,b ǫ s2
and the position ofa andb are same in the respec-
tive strings.
For example, in the wordrAm	q¤,, the junction isq + halanta +q. The break-up will be,s +halanta
andq. Hence we getrAmŝ + q¤,.

FISSCL-30

Proc. of FISSCL, Paris, October 29-31, 2007

• Define string s1, with first five entries of
� and
6th entry asf. Also, define s2, with first five en-
tries oft� and 6th entry ass. The rule says,
The junction isa + halanta+ c, and the breakup
will be b + halanta andc, wherea, c ǫ s1,b ǫ s2
and the position ofa andb are same in the respec-
tive strings.
For example, in the words>jn, the junction isj + halanta +j. j is the third character of
string s1. The break-up will be,d +halanta andj. Hence we getsd̂ + jn.

• We have defined strings asGoq andaGoq withaGoq containing first two characters of all the
five stringsk� ,
� , V� , t� , p� as well asf ,q , s. Goq contains all other consonants and all
the vowels. The rule says, if we get a junction
with a + halanta + c, where a,cǫ Goq, a will be
changed to correspondingaGoq while undoing
the sandhi. Similarly, other rules are made.

• The vowels are categorized intoã-v anddFG
 cat-
egories.ã-v containsa , i , u , � anddFG

containsaA , I , U , �. If the junction isa + n
+ halanta +n, wherea ǫ ã-v, the break-up will
be: a + n + halanta andφ, whereφ denotes null,
i.e. othern is removed. For example,tE-màr�y�
breaks up intotE-mn̂ andar�y�.

Visarga Sandhi:- We have looked at visarga sandhi in
a single word. The rules made are as follows:

• The junction isf + halanta + aǫ
� . The break-up
will be , and a.

• The junction isq + halanta + aǫ V� . The break-up
will be , and a.

• The junction iss + halanta + aǫ t� . The break-up
will be , and a.

• The junction isr + halanta + aǫ consonant. The
break-up will be, and a.

• The junction isr + halanta + aǫ vowel. The
break-up will be, and a.

4.2. Relation Analysis

With the root words and the attributes for each word
in hand for the previous step, we shall now endeavor

to compute the relations among the words in the sen-
tence. Using these relation values we can determine
the structure of each of the sentences and thus derive
the semantic net, which is the ultimate representation
of the meaning of the sentence.
For computing the relations, we have employed a case-
based approach i.e., nominals were classified as sub-
ject, object, instrument, recipient (beneficiary), point
of separation (apaadaana) and location, to the verb
based on the value of the case attribute of the word,
as explained under noun example in Section 3.1.

The Sanskrit language has a dependency grammar.
Hence the karaka based approach is used to obtain a
dependency parse tree. There are reasons for going for
dependency parse:

1. Sanskrit is free phrase order language. Hence, we
need the same parse for a sentence irrespective of
phrase order.

2. Once the karaka relations are obtained, it is very
easy to get the actual thematic roles of the words
in the sentence.

The problem comes when we have many possible
karakas for a given word. We need to disambiguate
between them. We have developed some If-Then rules
for classifying the nouns, pronouns, verb, sub-verbs
and adjectives in the sentence. The rules are as fol-
lows: First we are looking at the sentences having at
least one main verb. Nominal sentences are to be dealt
in the similar manner but the description will be given
later.

1. If there is a single verb in the sentence, declare it
as the main verb.

2. If there are more than one verb,

(a) The verbs having suffixÆA , Syp̂ , t� m� n̂
are declared subverbs of the nearest verb in
the sentence having no such affix.

(b) All other verbs are main verbs of the sen-
tence and relations for all other words are
given in regard to the first main verb.

3. For the nouns and pronouns, one state may have
many possibilities of the cases. These ambigu-
ities are to be resolved. The hand written rules
for determining these ambiguities are as follows

FISSCL-31

Proc. of FISSCL, Paris, October 29-31, 2007

(Rules are written for nouns. Adjective precede
nouns (May not precede too due to free word or-
der nature.) and hence get the same case as nouns.
For pronouns, rules are same as that for nouns.):

(a) Nominative case: The assumption is that
there is only one main subject in an active
voice sentence. We proceed as follows:
• All the nouns having nominal case as one

of the attributes are listed. (For exam-
ple,Plm̂ has both possibilities of being
nominative or accusative case.)

• All those connected by
 are grouped to-
gether and others are kept separate. We
now match each group along the follow-
ing lines:
– The number matches with that of the

verb(Singular/dual/plural).
– The root word matches with the per-

son of the verb(i.e root word ”a-md̂”
for 3rd person, ”y� 	md̂” for 2nd per-
son).

If ambiguity still remains, the one hav-
ing masculine/feminine as gender is pre-
ferred for being inktA
 karaka and de-
clared as subject of the main verb.

In passive voice,
• Nominative case is related to main verb

as an object. After grouping and going
through the match, the noun is declared
as object of main verb.

(b) Accusative case: Assuming that the disam-
biguation for nominative case works well,
there is no disambiguation left for this case.
All those left with accusative case indeed be-
long to that. The noun is declared as object
to nearest sub-verb or main verb.

(c) Instrumental case: If the sentence is in pas-
sive voice, the noun is declared as subject of
the main verb.
For active voice, ambiguity remains if the
number is dual. The folowing rules are used:
• We seek if the indeclinable such assh,sAkm̂, sAD
m̂, smm̂ follow the noun. In

that case, noun is declared as instrument.
• If the noun is preceded by time or dis-

tance measure or is itself one of these, it

is declared as instrument. For example�A<yAm̂ EdnA<yAm̂ nFrog, jAt,, here�A<yAm̂ is the disambiguating feature.

• If bEDr,, kAZ, are following noun, the
noun is declared as instrumental.

(d) Dative case: For dative case, disambiguity
is with respect to ablative case in terms of
dual and plural nnumbers The disambiguat-
ing feature used here is main verb. That is,
there are certain verbs which prefer dative
case and certain verbs prefer ablative. For
example:

• The verbs preferring dative case are�� D̂,dý � ĥ, I	ŷ
,as� ŷ, -p� ĥ etc.
• The verbs preferring ablative case arej� g� =sA, EvrAm, þmAd, vAr etc.

Initially, we have populated the list us-
ing a£A�yAyF knowledge as well as some
grammar books but this has to be done sta-
tistically using corpus analysis.

(e) Ablative case: The ambiguity here is for cer-
tain nouns with the genitive case in singular
person. The ambiguity resolution proceeds
along the following lines:

• If the noun having ambiguity has a verb
next to it, it will be taken as ablative
(Noun with genitive case marker is not
followed by a verb.)

• If suffixestrp̂, tmp̂ are used in the sen-
tence, the noun is declared as ablative.

• If t� Sy, sd� f are following the noun, it
is declared as genitive.

• Finally, we look for the disambiguating
verbs as done in previous case.

(f) Genitive case: The ambiguity is there in dual
with respec to locative case. We have used
that by default, it will be genitive since we
have not encountered any noun with locative
case and dual in number.

(g) Locative case: The ambiguities are already
resolved.

Only problematic case will be the situation discussed
in section 3.2 with the example ofsnA<yAm̂. If the al-
gorithm is able to generate a parse taking the longest
possible match, we will not go into stacked possibili-

FISSCL-32

Proc. of FISSCL, Paris, October 29-31, 2007

ties, but if the subject disagrres with the verb (block-
ing), or some other mismatch is found, we will have to
go for stacked possibilities.
Thus, we have got the case markings. Relation for
nominative and accusative case markings have already
been defined. For other case markings,

• Instrumental: related as an instrument to main
verb in certain cases (taken froma£A�yAyF).

• Dative: related as recipient to main verb in certain
cases, but also denotes the purpose.

• Ablative: related as separation point.

• Genitive: this is not considered as karaka since
karaka has been defined as one which takes role
in getting the action done. Hence it is related to
the word following it.

• Locative: related as location to the main verb.

Still, we have not given any relation to adjectives
and adverbs. For each adjective, we track the noun it
belongs to and give it the same attributes. It is defined
as adjective to the noun. The adverbs are related to the
verb it belongs as adverb.

Based on these relations, we can obtain a semantic net
for the sentence with verb as the root node and the
links between all the nodes are made corresponding to
relations with the verb and interrelations obtained.
Sanskrit has a large number of sentences which are
said to be nominal sentences, i.e. they don’t take a
verb. In Sanskrit, every simple sentence has a subject
and a predicate. If the predicate is not a finite verb
form, but a substantive agreeing with the subject,
the sentence is a nominal sentence. In that case, the
analysis that we have done above seems not to be used
as it is. But in Sanskrit, there is a notion calledaA"�p,
that is, if one of the verb or subject is present, other
is obtained to a certain degree of definiteness. Take
for example, the sentenceahm̂ klm�n ElKAEm..
If instead of saying the full sentence, I sayahm̂klm�n, ElKAEm is determined as verb. Similarly, if I
sayklm�n ElKAEm, the subjectahm̂ is determined.ahm̂ is a kind of appositive expression to the inflec-
tional ending of the verbElKAEm. We have used this
concept for analyzing the nominal sentences. That

is, verb is determined from the subject. Mostly, the
forms ofaŝ only are used and relations are defined
with respect to that. Although, the analysis done is
not exhaustive, some ruleset is built to deal with them.
Most of the times, relations in a nominal sentence
are indicated by pronouns, adjectives, genitive. For
example, in the sentences, s� �dr, bAlk,, there
is aA"�p of the verbaE-t in the sentence by the
subjectbAlk,. HencebAlk, is related to the verb
as subject.s, is a pronoun referring tobAlk, ands� �dr, is an adjective referring tobAlk,. Similarly,idm̂ t-y g� hm̂.. In this sentence,idm̂ is a pronoun
referring tog� hm̂ andt-y is a genitive tog� hm̂. Here
again, there will beaA"�p of the verbaE-t andg� hm̂
will be related to the verb as subject.

5. RESULTS

5.1. Databases Developed

The following Sanskrit Rule Databases have been de-
veloped during the project:-

• Nominals (fNd!p) rule database contains entries
for nouns and pronouns declensions along with
their attributes.

• Verb (DAt� !p) rule database contains entries for
10 classes of verb along with their tenses.

• Particle (a&yy) database.

Along with these databases, we have developed some
user interfaces (GUI) to extract information from
them. For example, if we want to get the forms of a
particular verb in a particular tense, we can just open
this GUI and give also obtained. the root word and
tense information.

5.2. Parser Outputs

Currently, our parser is giving an efficient and accu-
rate parse of Sanskrit text. Samples of four of the
paragraphs which have correctly been parsed are given
below along with snapshot of one sentences per para-
graph.an� QC�d 1:- p� >yA, g� z
rZA, rmZFy� g� zk� l� þAt,Enym�n s��yAm̂ upA-y m�DAEvn, Ef	yAn̂ sMyk̂a�yApyE�t. g� zk� l� an�k�ĈhrA, sE�t. k�
nbAlA,. k�
n þOYA,. g� z
rZA, þOYAn̂ CA/An̂

FISSCL-33

Proc. of FISSCL, Paris, October 29-31, 2007pAWyE�t. þOYA, bAlAn̂ pAWyE�t. sv�
 v�dm�/An̂Evf� �!p�Z uÎAryE�t. g� z
rZA, Ef	yAn̂ v�d-yaT
m̂ aEp boDyE�t. þEtEdnm̂ þAt, sAym̂ sv�
Ef	yA, yâm̂ aEp k� v
E�t. t� vnm̂ g(vA sEmD,aAnyE�t. t� Enym�n &yAyAmm̂ k� v
E�t. et� Ef	yA,ev Dm
-y r"Zm̂ kEr	yE�t..

Figure 2: Parser output forp� >yA, g� z
rZA, rmZFy�g� zk� l� þAt, Enym�n s��yAm̂ upA-y m�DAEvn,Ef	yAn̂ sMyk̂ a�yApyE�t.an� QC�d 2:- mm g� h� ekm̂ upvnm̂ vt
t�. upÿvn-y smFp� ekA gofAlA vt
t�. ahm̂ þEtEdnm̂þAt, s� yo
dyAt̂ p� v
m̂ f�yAm̂ (yÆA fO
AEdkm̂ EvÿDAy gofAlAm̂ gQCAEm. t/ mm gO, mAm̂ þtF"t�.mm go, nAm DvlA aE-t. DvlAyA, v(sAyA,nAm gOrF aE-t. ahm̂ DvlAm̂ þ�MZA -p� fAEm.t-yA, sAÜAyAm̂ k�X� y�. sA þsàA BvEt. gOrFm̂aEp krA<yAm̂ s\vAhyAEm. t(p�At̂ gofAlAm̂mAj
yAEm. gomym̂ , B� ÄAvEf£AEn t� ZAEn
Enr-yAEm. tt, mm DvlAy{ s� -vAd� En komlAEnt� ZAEn dd�. an�trm̂ gOrFm̂ m� ÑAEm. sA JEVEt-vmAtrm̂ DvlAm̂ Dyt�. DvlAyA, UDEs "Frm̂avtrEt. t(p�At̂ ahm̂ DvlAm̂ d� `Dm̂ d� h�. ett̂mm En(ykm
,. gos�vAkAl� ahm̂ gomEhmþEtpAdÿkAn̂ v�dm�/An̂ m�dm̂ m�dm̂ mD� r-vr�Z uÎAryAEm..an� QC�d 3:- mm g� h� ekm̂ upvnm̂ vt
t�. upÿvnm̂ EvfAlm̂ aE-t. aE-mn̂ upvn� nAnA Plv� "A,sE�t. bhv, p� 	ptrv, aEp vt
�t�. an�kA, ltA,aEp Ev��t�. aAy� v{
Edk vn-pty, aEp sE�t.ahm̂ þEtEdnm̂ sAy\kAl� u�Ankm
 k� v�
. ahm̂

Figure 3: Parser output forahm̂ þEtEdnm̂ þAt,s� yo
dyAt̂ p� v
m̂ f�yAm̂ (yÆA fO
AEdkm̂ EvDAygofAlAm̂ gQCAEm.hAEnkrAEZ t� ZAEn EnrAkroEm. ahm̂ vAErZA svA
n̂vn-ptFn̂ EsÑAEm. sAy\kAl� upvn� mm Ept�
rZA,B}mE�t. t{, sAkm̂ mm B}At� jA, aEp B}mE�t.kdAE
t̂ gOrF aEp t/ aAyAEt. s, it-tt, v�g�nDAvEt. fA�l� hErtt� ZAEn
rEt. my� rA, aEp t/aAg(y n� (yE�t. t� mD� rm̂ �vEnm̂ k� v
t�. v� "�q�vAnrA, �FXE�t. EvEvDA, pE"Z, v� "�q� k� jE�t.mm mAt�
rZA, sv�
<y, roEVkAK�XAEn DA�ykZAn̂
 EvtrE�t. idm̂ d� [ym̂ aEt aAn�dþdm̂ BvEt.
Figure 4: Parser output formm mAt�
rZA, sv�
<y,roEVkAK�XAEn DA�ykZAn̂
 EvtrE�tan� QC�d 4:- mm d�f-y nAm BArtvq
m̂. mmd�f� v�dAnAm̂ a�yynm̂ BvEt. v�d�q� þAEZnAm̂mn� 	yAZAÑ jFvnAy aAv[ykA, EnymA, vEZ
tA,sE�t. v�d�q� a�ytm, �`v�d,. �`v�d� ekm̂ vAÈm̂vt
t�,”h� mAnv ! (vm̂ k� Eqm̂ av[ym̂ k� z.” sMp� Z�
jgEt j�t� nAm̂ jFvnADAr, aàm�v.aàÑ k� Eqm̂EvnA n{v sMBvEt. at, BArtFyA, aA
AyA
,sv�
qAm̂ jFvAnAm̂ kSyAZAy k� Eqkm
Ef"ZAybh� EvDAn̂ upAyAn̂ aEf"y�t. t�q� þDAn, upAy,

FISSCL-34

Proc. of FISSCL, Paris, October 29-31, 2007gov\fs�vA. go, v\f� D�nv, , blFvdA
, v� qBA, ,v(sA, , v� �A, D�nv, sv�
 gov\fjA, a�tB
vE�t.B� m�, blvD
nAy gom� /m̂ gomym̂
 a(y�tm̂upk� !t,. bldA, B� Emm̂ kEq
t� m̂ upy� >y�t�.f-yAnAm̂ nynAnynA<yAm̂ gomyj�yuv
rkAZAm̂itrpdATA
nAm̂ it-tt, þApZAy fkVAnAm̂ þyog,aAv[yk,. fkVA� v� qB{r�v u��t�. at, gov\f-yk� q�� aEvQC�� k�n ap� v
, sMb�D, vt
t�. atevgo, upmA dAt� m̂ n fÈt�. B� m�, ekm̂ nAm gO,i(yEp Ev�t�. s\-k� t� gO, iEt pd�n -/F gOp� ½v� uBAvEp g� �t�. k� EqvD
nAy f-ynAfkAnAm̂kFVAnAm̂ nAfAT
m̂ k�
n GAtkdý &yAnAm̂ þyogm̂k� v
t�. sAmv�d-y þTm� aAE

k� k� EqEvqy� gMBFrA

A
 þA=yt�. a-mAkm̂ g� rv, mhq
y, sMp� Z
jgt, kSyAZAy k� EqEv�Am̂ sMyk̂ þ
Aryn̂.k� Eqkm
Z� jnAn̂ þ�Ertv�t,. v�d�q� B� Em, mAtA iEtkLyt�. yTA mAtA a-mAn̂ pAlyEt tTA p� LvFsvA
n̂ jFvAn̂ aà�n Pl{, nAnAEvDpdAT{
, pAlyEt.y�/{, , t{l��Dn�n , rsAyndý &y{, kFVnAfk{,
 yAk� Eq E�yt� t�n sv�
qAm̂ jFvAnAm̂ nAf ev BvEt.an�n km
ZA sv�
qAm̂ þAEZnAm̂ mn� 	yAZAÑ mhtFhAEn jAyt�. .

Figure 5: Parser output forv�d�q� þAEZnAm̂ mn� 	yAZAÑjFvnAy aAv[ykA, EnymA, vEZ
tA, sE�t.
The parse results pave the way for representing the

sentence in the form of a Semantic Net. We here give
the semantic net for the parse output given in Figure
2.The Semantic Net is shown in Figure 6.

6. CONCLUSIONS AND FUTURE WORK

Our parser has three parts. First part takes care of the
morphology. For each word in the input sentence,
a dictionary or a lexicon is to be looked up, and

a�yApyE�tg� z
rZA,p� >yA, Ef	yAn̂m�DAEvn,
g� zk� l� rmZFy�

upA-yþAt, Enym�ns��yAm̂sMyk̂
subject

adjective

object

adjective

location

adjective

vs

adverb

adverb

object
adverb

Figure 6: Semantic net representation of the sen-
tence [p� >yA, g� z
rZA, rmZFy� g� zk� l� þAt,Enym�n s��yAm̂ upA-y m�DAEvn, Ef	yAn̂ sMyk̂a�yApyE�t.]
associated grammatical inforation is retrieved. One
of the criterion to judge a morphological analyzer is
its speed. We have made a linguistic generalization
and declensions are given the form of DFA, thereby
increasing the speed of parser. Second part of the
parser deals with making ”Local Word Groups”. As
noted by Patanjali, any practical and comprehensive
grammar should be written in ’utsarga apavaada’
approach. In this approach rules are arranged in
several layers each forming an exception of the
previous layer. We have used the ’utsarga apavaada’
approach such that conflicts are potentially taken care
of by declaring exceptions. Finally, words are grouped
together yielding a complete parse. The significant
aspect of our approach is that we do not try to get the
full semantics immediately, rather it is extracted in
stages depending on when it is most appropriate to do
so. The results we have got are quite encouraging and
we hope to analyze any Sanskrit text unambiguously.

To this end, we have successfully demonstrated
the parsing of a Sanskrit Corpus employing tech-
niques designed and developed in section 2 and 3.
Our analysis of the Sanskrit sentences in the form
of morphological analysis and relation analysis is
based on sentences as shown in the four paragraphs
in previous section. The algorithm for analyzing
compound words is tested separately. Hence future

FISSCL-35

Proc. of FISSCL, Paris, October 29-31, 2007

works in this direction include parsing of compound
sentences and incorporating Stochastic parsing. We
need to take into account thenAmDAt� as well. We
are trying to come up with a good enough lexicon so
that we can work in the direction ofsmAs EvQC�d in
Sanskrit sentences. Also, we are working on giving all
the rules of Panini the shape of multiple layers. In fact,
many of the rules are unimplementable because they
deal with intentions, desires etc. For that, we need to
build an ontology schema. The Sandhi analysis is not
complete and some exceptional rules are not coded.
Also, not all the derivational morphology is taken care
of. We have left out manyþ(yy. Reason behind
not incorporating theþ(yy was that it is difficult to
come up with a general DFA tree for any of theþ(yy
because of the wide number of rules applicable. For
that, we need to encode the Panini grammar first.

Acknowledgment

We humbly acknowledge our gratitude to revered
Aacharya Sanskritananda Hari, founder and director of
Kaushalya pitham Gurukulam, Vadodara for educating
us in all aspects of Sanskrit language.

7. REFERENCES

Blai Bonet and Hctor Geffner 2001.Planning as
heuristic search. Artificial Intelligence 129.

Ferro, M.V., Souto, D.C., Pardo, M.A.A.. 1998.Dy-
namic programming as frame for efficient parsing.
Computer science, 1998.

Ivanov, Y.A., Bobick, A.F. 2000.Recognition of vi-
sual activities and interactions by stochastic pars-
ing. Volume 22, Issue 8, Aug. 2000 Page(s):852
- 872. IEEE Transactions on Pattern Analysis and
Machine Intelligence.

Briggs, Rick. 1985.Knowledge Representation in
Sanskrit and artificial Intelligence, pp 33-39. The
AI Magazine.

G. Huet. 2002.The Zen Computational Linguistics
Toolkit. ESSLLI 2002 Lectures, Trento, Italy.

G. Huet. 2005.A Functional Toolkit for Morpho-
logical and Phonological Processing, Application
to a Sanskrit Tagger. Journal of Functional Pro-
gramming 15 (4) pp. 573–614.

G. Huet. 2006.Shallow syntax analysis in Sanskrit
guided by semantic nets constraints. International
Workshop on Research Issues in Digital Libraries,
Kolkata. Proceedings to appear as Springer-Verlag
LNCS, 2007.

Bureau of Indian Standards. 1999.ISCII: Indian
Script Code for Information Interchange. ISCII-91.

Akshar Bharati and Rajeev Sangal. 1993.Parsing
Free Word Order Languages in the Paninian Frame-
work. ACL93: Proc. of Annual Meeting of Associa-
tion for Computational Linguistics. Association for
Computational Linguistics, New Jersey, 1993a, pp.
105-111.

Kale, M.R. A Higher Sanskrit Grammar. 4th
Ed,Motilal Banarasidass Publishers Pvt. Ltd.

Hopcroft, John E., Motwani, Rajeev, Ullman, Jef-
frey D. 2002. Introduction to Automata Theory,
Languages and Computation. 2nd Ed, Pearson Ed-
ucation Pvt. Ltd., 2002.

FISSCL-36

SANSKRITTAGGER, A STOCHASTIC LEXICAL AND POS TAGGER FOR
SANSKRIT

Oliver Hellwig

ABSTRACT
SanskritTagger is a stochastic tagger for unpre-
processed Sanskrit text. The tagger tokenises text with
a Markov model and performs part-of-speech tagging
with a Hidden Markov model. Parameters for these
processes are estimated from a manually annotated
corpus of currently about 1.500.000 words. The ar-
ticle sketches the tagging process, reports the results
of tagging a few short passages of Sanskrit text and
describes further improvements of the program.

The article describes design and function of
SanskritTagger, a tokeniser and part-of-speech
(POS) tagger, which analyses ”natural”, i.e. unanno-
tated Sanskrit text by repeated application of stochas-
tic models. This tagger has been developped during
the last few years as part of a larger project for digi-
talisation of Sanskrit texts (cmp. (Hellwig, 2002)) and
is still in the state of steady improvement. The arti-
cle is organised as follows: Section 1 gives a short
overview about linguistic problems found in Sanskrit
texts which influenced the design of the tagger. Section
2 describes the actual implementation of the tagger. In
section 3, the performance of the tagger is evaluated on
short passages of text from different thematic areas. In
addition, this section describes possible improvements
in future versions.

1. INTRODUCTION

Concerning its analytical abilities,
SanskritTagger is located quite at the bot-
tom of a hierarchy of taggers. The tagger neither
constructs a complete nor a partial syntactical analysis
of a Sanskrit text. Instead, it only identifies the most
probable lexical resolution for a given group of strings
(tokenisation) and their most probable part-of-speech
(POS) tags. In comparison with taggers for some

European languages, this result might not seem very
noteworthy. In fact, the limited abilities of this tagger
are caused by the difficulties which Sanskrit poses
to any tagging process especially during tokenisation
and which are not encountered – at least in that degree
– in the processing of European languages.

On a low phonological level, the euphonic rules
called sam. dhi are certainly a serious obstacle to an
easy tokenisation of Sanskrit text. While these regu-
lar phonological transformations can be resolved with
automata (Huet, 2007) or by using a simple lookup
strategy (see below, 2.2), they introduce a great deal
of ambiguity in any analysis of Sanskrit text. Consider
for example a long string where three points forsam. -
dhi splitting can be identified. Each of thesesam. dhis
may be resolved in three different ways. Even in this
simple example,3·3·3 = 27 new strings are generated
by the complete resolution at the three splitting points.

The high number of candidate strings which must
be checked for validity aftersam. dhi resolution, leads
directly to a group of connected phenomena which
are in my opinion the central challenge for any auto-
matic processing of Sanskrit: The extrememorpho-
logical and lexical richnessof Sanskrit. Even if a
moderately sized dictionary as inSanskritTagger
is used, there exist about five million distinct inflected
nominal and verbal forms which may be found in any
text. (English, a language with a large vocabulary, has
about one half of this number!) On one hand, oppo-
site to languages as German and English, the rich mor-
phology clarifies the functions of words in a phrase
and therefore makes POS tagging (and parsing) easier.
On the other hand, it is responsible for many analy-
ses which are in fact just nonsensical (e.g.āsane⇒
ā - sane, ”to - in the gain”). These problems are ag-
gravated by the peculiarities of Sanskrit lexicography.

Proc. of FISSCL, Paris, October 29-31, 2007

The first important lexical phenomenon is the lowtext
coverageof Sanskrit vocabulary. Compare the follow-
ing figures for English texts (taken from (Waring and
Nation, 1997)) and for the Sanskrit corpus which I col-
lected during the last years:

Vocabulary size Text coverage
English Sanskrit

1000 72.0 60.8
2000 79.7 70.3
3000 84.0 75.2
4000 86.8 78.2
5000 88.7 80.3
6000 89.9 81.9

Although the English corpus is certainly better bal-
anced than the Sanskrit corpus – meaning that texts
from more diverse sources are included, what should
actually lead to a decrease of text coverage –, the val-
ues for text coverage are clearly higher for English
than for Sanskrit. Therefore, for tokenising even a
simple Sanskrit text, a tagger must take into account
a considerably higher number of lexemes than in other
languages. This fact excludes to some extent ”easy so-
lutions” as reduced vocabularies which proved useful
in tagging (technical) texts in other languages.

Besides, Sanskrit has a great number ofhomonyms.
A query in the program dictionary which took into ac-
count only homonymous words with the same gram-
matical category resulted in the following figures:1

nr. of homonyms frequency
2 1949
3 112
more than 3 17

Among these homonyms, a lot of words with high fre-
quency can be found as for examplekesara, m. masc.
with the four basic meanings ”mane”, ”(lotus) fibre”,
”(a plant name, prob.) Mesua ferrea L.” and (infre-
quent) ”name of a mountain” (but see LIPUR, 1, 72, 7
for a reference).

A further, often neglected difficulty is the almost
total lack of punctuation marks in Sanskrit texts.
Apart fromdan. d. as in narrative texts, which often mark

1This is actually a quite strong constraint, as for example nouns
of categories ”a masc.” and ”a neutr.”, which have the same un-
changeable stem, differ only in few forms. Including these pseudo-
homonymous words would increase the rate of homonyms up to
ten percent of the total vocabulary.

the end of a (complex) narrative substructure, San-
skrit texts do not use any kind of reliable punctuation.
dan. d. as in metrical texts actually mark the end of a
verse which often, but by far not regularly, coincides
with the end of a syntactic structure as for example a
subordinate clause. So,dan. d. as may be helpful in gen-
erating hypotheses about the syntactic structure of a
text, but can not be considered as punctuation marks
in a strict sense. This lack has a far reaching effect
on any tagging or parsing process applied to a Sanskrit
text, because it can not be guaranteed that all words
necessary for a complete analysis are really contained
in the text delimited by these marks. Manual prepro-
cessing of the text (e.g. insertion of a clear punctua-
tion) can counteract this phenomenon, but certainly is
contrary to the notion of natural, i.e. unpreprocessed
text.

Finally, to understand Sanskrit texts correctly, it is
often necessary to supplement a great deal ofimplicit
knowledge. This situation occurs in two closely re-
lated areas. Firstly, texts which openly simulate speech
acts as for example dialogues often necessitate the ad-
dition of central parts of speech as subject or objects.
This phenomenon, which is also known from texts
in other languages, is a still puzzling, but intensively
studied topic in computational linguistics. Secondly,
especially scientific texts in Sanskrit as commentaries
or sūtras frequently use a kind of prose which imitates
an oral controversy between the proposers of differ-
ing opinions. Although this kind of prose is prob-
ably derived from real discussions, it uses a highly
formalised language (for a description see e.g. (Hart-
mann, 1955)). ”Sentences” in this language frequently
only offer few pieces of information which must be
inserted in an implicit ”knowlegde frame” to be sup-
plied by the reader. Consider for example the dis-
cussion ofsāpin. d. ya in the PARĀŚARASMR. TIT. ĪK Ā (on
PARĀŚARADHARMASAM. HITĀ, Ācārakān. d. a, 2, 15;
(I.V. V āmanaśarm ā, 1893), 59). After the author has
proposed the standard model of this kind of relation,
which includes three generations into past and future
starting from theyajam̄ana, an opponent objects that
brother, uncle etc. of theyajam̄anaare not included in
this model and therefore not related to theyajam̄ana
by sāpin. d. ya. In the following reply of the author, in-
formation which is really supplied in the text is printed
in bold characters:

FISSCL-38

Proc. of FISSCL, Paris, October 29-31, 2007

maivam
This isnot like this!
uddeśyadevataikyena kriyaikyasyātra
vivaks. itatvāt
Brother, uncle etc. are included in this
model becausethe identity of the ritual
is expressed by the identity of the gods
invoked.

I am not arguing that these phrases are not well formed.
Nevertheless, their syntax and pragmatics can only
be analysed correctly, after the pragmatics of the sur-
rounding text has been analysed and ”understood” by
the computer. The same holds true for phenomena
such as anaphora resolution. Actually, this is a task
which in my opinion is by far too difficult for any au-
tomatical analysis of Sanskrit currently available.

2. IMPLEMENTATION OF THE TAGGER

To keep data and algorithms clearly separated, lan-
guage specific information is stored in adatabase,
while the tagging routinesare implemented inC++
with heavy use ofSTL classes. The following section
describes these two central components of the tagging
software.

2.1. The database

The first main component of the program, a relational
database, which can be queried viaSQL, stores dictio-
nary, grammatical information, and a text corpus. The
original dictionary was based on the digitalised version
of Monier-Williams which was parsed with regular ex-
pressions to extract lexemes, meanings and grammat-
ical categories. These information types were stored
in separate tables in the database. During the last few
years, the dictionary has been extended especially in
the areas of̄Ayurvedaand religious philosophy. It cur-
rently contains about 178.000 lexemes (172.000 nouns
and 6.000 verbs) with about 185.000 associated gram-
matical categories and about 325.000 meanings.

An important issue in the processing of strongly in-
flectional languages as Sanskrit is the correct recogni-
tion of inflected forms. Here, I chose a twofold strat-
egy. Inflectednominal forms are not stored in the
database, but are recognised on the fly during the tag-
ging process. For this task, all possible endings for any
nominal grammatical category are stored in a separate

san̄abhȳam

ām = acc. sg. of declension typēa fem.
dictionary lookup for (san̄abh, ā fem.)
success⇒ 1st candidate

san̄abhyām

yām = loc. sg. of declension typei adj.
dictionary lookup for (san̄abh, i adj.)
success⇒ 2nd candidate

. . .

Figure 1: Example for the analysis of nominal forms

table. During tagging, the last few letters of a given
string are compared with these endings. If an ending
matches the last letters of the string, the dictionary is
searched for the first part of the string in the respec-
tive grammatical category. If a matching lexeme could
be found in the dictionary, a new candidate is added
to the set of possible solutions. Computationally, this
approach speeds up the tagging process, because the
lookup of the last few letters of a given string in an
efficiently organised small set of endings is much less
time consuming than a query from a database of over
four millions inflected forms. Though the difference in
duration only amounts to a few milliseconds per oper-
ation, the performance loss sums up to several seconds
for a phrase of moderate size. Figure 1 sketches an
example for this approach.

On the contrary, inflectedverbal formsare stored in
the database. Currently, the database contains about
440.000 inflected verbal forms including forms de-
rived from prefixed verbs. The decision to store the
full verbal forms was not only motivated by the com-
paratively small number of forms, but also by the fre-
quent irregularities and exceptions in the verbal system
of Sanskrit. Of course, it is possible to construct au-
tomata which generate and accept correct verbal forms
at runtime. Nevertheless, it seems to me that such an
approach requires more effort than the design of a sim-
ple algorithm which generates correct verbal forms of
the most typical grammatical classes and leaves the
rest of the job (including correction of errors and in-
put of rare or special forms) to the user. As in the case
of nominal forms, the last few letters of possible verbs
are checked before the database is queried.

Apart from the lexical and grammatical information,

FISSCL-39

Proc. of FISSCL, Paris, October 29-31, 2007

1. √gam, 3. sg., pr., P.

2. ı̄śvara, comp.

3. ātman, comp.

4. māyā, instr. sg.

dictionary meanings etc.@@
@@

@@
@@

@

ZZZZZZZZZZZZ
eeeeeeeeeeee
ssssssssssss

//

Figure 2: Analysis and storage ofgacchat̄ıśvar̄atmam̄ayaȳa

the database also stores a corpus of analysed Sanskrit
texts which is of central importance to the tagging pro-
cess. In short, every separable string of an input text
is stored as a separate item in this corpus. After tag-
ging this text, each of its strings is connected with an
ordered list of references to grammatically annotated
nouns from the dictionary and/or verbal forms. For
example, the (fancy) stringgacchat̄ıśvar̄atmam̄ayaȳa
is analysed and stored as sketched in figure 2. The
figure makes clear the first important area of appli-
cation of this corpus: Every string is resolved into
lexemes or tokens, which are connected to the dic-
tionary. The dictionary points in turn to further in-
formation about these lexemes as meanings etc. Of
course, these relations may be inverted. Therefore,
the corpus may be used to retrieve Sanskrit words ef-
ficiently in large amounts of text. Examples are the
retrieval by lexeme (”Show all references in text X for
the word Y!”), by meaning (”Show all references of
words which have the meaning X!”) or even by se-
mantic concepts. Besides, the corpus is used to es-
timate the statistical parameters for the tagging pro-
cess (see below). – In the moment, the corpus con-
tains about 1.560.000 strings which are resolved into
about 2.190.000 tokens. Each of these tokens is con-
nected with a lexeme, and about 90 percent of them
also have a POS annotation. Among others, the cor-
pus includes the full analysed text of the RĀM ĀYAN. A,
the first books of the MAHĀBHĀRATA , some works
of dharma- (e.g. MANUSMR. TI) and Pur ān.a tradition,
philosophical literature of́Saivism and many works on
ĀyurvedaandRasaś̄astra (alchemy).

2.2. The tagging algorithm

The tagging software is divided into two main mod-
ules. In the first module, hypotheses about the anal-
ysis of a phrase are generated with the help ofsam. -

dhi resolution and dictionary lookup. In the context
of Sanskrit, a phrase does not mean a complete, self-
contained syntactic structure, which may e.g. be ex-
tracted from a text with regular punctuation (see 1).
Instead, a phraseP is a group of strings, i.e. words
separated by blanks, which is terminated by a (dou-
ble) dan. d. a. Such a group may, but needs not nec-
essarily coincide with a complete syntactic structure.
The hypotheses resulting from this first analysis are
organised in an often complex tree- or rather forest-
like structure. The purpose of the second module is to
find the most probable lexical and morphological path
through this structure given the statistical information
extracted from the corpus. This path will constitute the
final analysis of the phrase.

A string Si ∈ P of lengthL is parsed from left to
right. At each positionj with 1 ≤ j ≤ L, a maximal
number ofnmax letters of the string are searched in a
trie T whose nodes are sorted in binary order.T stores
sam. dhi rules of the formR = {sSRC , s1, s2, type}
wheresSRC is the result of thesam. dhi betweens1 and
s2 andtype denotes the area of application of thissam. -
dhi (word, phrase, both). In trie terminology,sSRC

constitutes the path which leads to the leaves consist-
ing of the reduced rulesR′ = {s1, s2, type}. Obvi-
ously, multiple leaves may be assigned to a single path,
as for example{ā, a, both} and{a, a, both} to the sin-
gle letter path̄a. nmax denotes the length of the longest
sSRC and is precalculated at program start.

If an extractsijl of Si at positionj matches a path
sSRC from the trie,l letters are removed fromSi be-
ginning at positionj. Si is split into two new strings∫i1
and∫i2 at positionj and thesam. dhi replacementss1

ands2 are affixed respectively prefixed to∫i1 and∫i2.
Thereby, the new strings∫i1 + s1 = Si1 ands2 + ∫i2 =
Si2 are created. Figure 3 shows an example for this

FISSCL-40

Proc. of FISSCL, Paris, October 29-31, 2007

gacchat̄ı ti
R = {̄ı, i, i, both}

gacchat.ti(deletion of̄ı)

gacchat+ i = gacchati= S1, i + ti = iti = S2

��

��

sijl = si71

||

Figure 3:sam. dhi resolution for the stringgacchat̄ıti

approach.2 To keep thesam. dhi-rule base simple, the
program uses a recursive strategy forsam. dhi resolu-
tion. For example, a stringSi1 = xxxd resulting from
the ruleR = {dbh, d, bh, both} can be transformed
further by application ofR = {d, t,−, phrase} into
the formxxxt. After creation ofSi1 andSi2, thesam. -
dhi routine is recursively called for these new strings
which are treated in the same way asSi. If the run-
ning indexj reaches the end of a string (j = L), it
is checked ifSi is a valid Sanskrit form. The proce-
dures for this check and the respective structures of
the database were shortly described in section 2.1. If
Si is a valid Sanskrit form, the grammatical and lexical
analysis ofSi are inserted into the analysis ofP.

During sam. dhi resolution and dictionary lookup,
each Si ∈ P may have been resolved into
m different subsets {Si11,Si12, . . . ,Si1n1

}, . . . ,
{Sim1, . . . ,Simnm

} due to differentsam. dhi resolution
(SR). Furthermore, each of the substringsSijk has at
least one grammatical and lexical analysisAijkl at-
tached to it. Here,j is the number of the current SR,k

the position of the substring inSRj andl the index of
the analysis for substringSijk. Take for example the
stringS1 = devadattakr. takriyā. (Parts of) two possible
solutions (SR1 andSR2) are shown in figure 4 and 5.
As indicated by the lines connecting the partial solu-
tions Aijkl, the second step of the tagging consists in
finding the most probable path which runs through all
Si ∈ P. This step is again divided into two substeps.
In the first substep, the most probable lexical path is
searched with the help of a Markov model (MM). This
path is fixed as the tokenisation ofP. In the second
substep, the most probable syntactical analysis of this
path is searched with a HMM.

2The expressionsi71 in figure 3 is not a mistake. Becausech
is treated as a single phoneme, it is replaced with a single letter in
the internal representation.

The first substep, i.e. thetokenisation can be mod-
elled with a discrete, first-order Markov chain (see
e.g. (Rabiner, 1989) for a readable introduction). The
MM is based on the concept of conditional probabil-
ity, which is the probability of eventB given the oc-
currence of another eventA: P (B | A) = P (A∩B)

P (A) . In
the given context, ifx[a,b] denotes an ordered sequence
of lexemes with decreasing indicesi (a ≥ i ≥ b), the
probability that phraseP of lengthL is tokenised into
lexemesx1, x2, . . . xL is given as

p(x)
︸︷︷︸

P (A∩B)

= p(xL | x[L−1,1])
︸ ︷︷ ︸

P (B|A)

· p(x[L−1,1])
︸ ︷︷ ︸

P (A)

= p(xL | x[L−1,1]) · p(xL−1 | x[L−2,1])

·p(x[L−2,1]) etc.

(1)

Under the assumption, that the probability of each lex-
eme depends only on its direct predecessor (first-order
model), the formula is simplified to

p(x) = p(xL | xL−1) · p(xL−1 | xL−2) · . . . · p(x1)

= p(x1)Π
L
i=2p(xi | xi−1) (2)

For reasons of floating point accuracy, equation 2 is
transformed into

p(x) = log p(x1) +
L∑

i=2

log p(xi | xi−1) (3)

with log(a · b) = log a+log b. To find the most proba-
ble path, a modified form of the well knownViterbi al-
gorithm is used. This algorithm was actually designed
for HMMs, but can be applied to the given problem
due to its similar structure. Before applying this al-
gorithm to the data, it should be taken into consider-
ation, that any stringSi may have been resolved in
subsetsSix andSiy with different sizes|Six| 6= |Siy|.
Therefore, the algorithm can not be applied naively to
the hypotheses generated in the first step. Instead, for
each PhraseP which containsN stringsS1, . . . ,SN ,
a vector of lengthN is allocated which stores for ev-
ery stringSi the currently checked indexj of its sam. -
dhi resolutions. So, a vector beginning in1 2 1 . . .
means, that currently the first resolution ofS1, the sec-
ond resolution ofS2 and the first resolution ofS3 are

FISSCL-41

Proc. of FISSCL, Paris, October 29-31, 2007

A1111: devadatta
[N.N.]

[noun, comp.]

A1112: devadatta
[N.N.]

[noun, voc. sg. m.]

A1113: devadatta
[god-given]
[adj., comp.]

A1121: kr. takriya
[who has done his duty]

[adj., nom. sg. f.]
wwwwwwwwwwwwwww

������������������

Figure 4: A possible analysis of the stringdevadattakr. takriyā

A1211: devadatta
[N.N.]

[noun, comp.]

A1212: devadatta
[god-given]
[adj., comp.]

A1221: kr. ta
[to do]

[PPP, comp.]

A1222: kr. ta
[theKr.ta age]
[noun, comp.]

A1223: kr. ta
[name of a man]
[noun, comp.]

A1231: kriy ā
[action]

[noun, nom. sg. f.]
����������� 55

55
55

55
55

5

^^̂^^^̂

**
**

**
**

**
**

**
**

**
*

55
55

55
55

55
55

�������������������

Figure 5: Another possible analysis of the stringdevadattakr. takriyā

FISSCL-42

Proc. of FISSCL, Paris, October 29-31, 2007

checked. Such a combination of the analyses of suc-
cessive strings will be calledpath subset(PS). (Note
that the diagrams which show possible resolutions of
devadattakr. takriyā each constitute one path subset!)
If ni denotes the number ofSRs for Si, there ex-
ist ΠN

i=1ni different PSs. Now, among allPSs, the
PS with the best path regarding lexical probability is
searched with a modified version of the Viterbi algo-
rithm. Obviously, somePS consist of shorter paths
because the strings in these combinations were split
at fewersam. dhi points. To treat allPS equally, they
are filled up with ”dummy probabilities” which are
calculated as the mean of the probabilities constitut-
ing the best pathπopt u ∈ PSu. If lmax denotes the
length of the longestPS, lu the length of the current
PSu and p̄(πopt u) the average transition probability
between all elements constituting the optimal path in
PSu, the value

∑lmax

r=lmax−lu
log p̄(πopt u) is added to

the probability ofπopt u.

The most probable path found with this algorithm
is considered as the tokenisation ofP, which is then
annotated morphologically with the help of an HMM.
The POS tagset used for this annotation contains the
136 items shown in table 1. To understand the rela-
tion between this tagset and the actual morphological
analysis of a word, consider the stringgacchati. Af-
ter the program has fixed the lexemegam (”to go”)
as its most probable lexical analysis, there exist three
possible morphological resolutions: ”he/she/it goes”
(3rd, sg., pres., P.) and ”in the going . . . ” (loc. sg.,
masc./neutr., part. pres., P.). The solution ”he . . .
goes” is mapped to the POS tag [”present tenses”,
3rd, sg.], while the nominal solutions are mapped to
[”present participles”, loc., sg., masc.] and [”present
participles”, loc., sg., neutr.], respectively. Note, that
a good deal of information is lost during this mapping
process. For example, no distinction is made between
different present tenses. Instead, forms likegacchati
andgacchatuare considered to be syntactically equiv-
alent and are therefore mapped to the same POS tag.
This loss of information reflects the decision between
the granularity of the tagset and the amount of text
from which the probabilities of the tags can be esti-
mated – the more text is available, the finer a granular-
ity can be chosen.

The HMM λ = {A,B, π} used to simulate the syn-
tactical structure ofP consists of the probability dis-

tribution A of transitions between tags (= states), the
observation symbol probability distributionB, which
records the probabilitiesp(x | T) that a lexemex is
emitted given the tagT , and the initial state distribu-
tion π, i.e. the probabilities with which a tag opens
a phrase (cmp. (Rabiner, 1989), 260/61). The values
in A can be estimated from the corpus. The proba-
bilities in B can be calculated usingBayes theorem
p(T) · p(x | T) = p(x) · p(T | x), wherep(x), p(T)
andp(T | x) again can be estimated from the corpus.
As indicated above, the optimal path with regard to
POS probability is again searched with the Viterbi al-
gorithm. This path is finally presented to the user as
the most probable resolution of a phrase, which may
be accepted and stored in the database or (manually)
replaced with a better solution.

3. PERFORMANCE AND IMPROVEMENTS

This section gives the results of tagging some short
passages of text. The results are in no way represen-
tative. They are only meant to demonstrate the perfor-
mance of the algorithm on different types of Sanskrit
text. Three types of errors are distinguished. A sam. dhi
error (eS) occurs if a string is split at wrong splitting
points. This error invalidates the results for the whole
string. A lexical error (eL) indicates that a string was
split at correctsam. dhi points, but that a wrong lexeme
was activated during tokenisation. Finally, aPOS er-
ror (ePOS) occurs if a wrong POS tag was assigned to
a correct token. Furthermore, the valuerSL gives the
ratio of strings to lexemes, i.e.rSL = nr. of strings

nr. of lexemes. A
high value ofrSL indicates that the passage uses few
composite words. – The following five passages were
analysed:

1. LI ṄGAPURĀN. A, 2, 20, 1-10: APurān. ic text
which treats áSivaite topic. Easy verses.

2. VIS. N. USMR. TI, 63, 35-50: An example of the sci-
entific style. Many supplements are needed to get
the full meaning of the passage.

3. MŪLAMADHYAMAK ĀRIK Ā of N āg ārjuna, 12, 1-
10: Easy Buddhist prose (from a linguistic point
of view!).

4. ḠITAGOVINDA of , 1.2-5: Poetry with many un-
usual words.

FISSCL-43

Proc. of FISSCL, Paris, October 29-31, 2007

Verbal forms

Finite verbal forms
present tenses (incl. imperative and opt.)×9: person, number 9
past tenses ×9: person, number 9
future tenses ×9: person, number 9
other tenses ×9: person, number 9
Infinite verbal forms
absolutive 1
infinitive 1
past participle, gerund ×24: case, nr., gender 24
present participles ×24: case, nr., gender 24
other participles ×24: case, nr., gender 24

Nominal forms

indeclinable 1
nouns in composite words 1
nouns, adjectives ×24: case, nr., gender 24

136

Table 1: Tagset used for POS tagging of Sanskrit text

5. KĀMASŪTRA, 2, 1, 1-12: Scientific prose.

The results, which are displayed in table 2, support
the assumptions about the problems which are encoun-
tered in tagging natural Sanskrit text (see section 1).
The tagger performs best on texts which are written in
an easy style and come from ”well known” areas of
knowlegde (1, 3). On the contrary, a difficult vocabu-
lary (5) and demanding syntactical structures (4) intro-
duce a great deal ofsam. dhi (4, 5) and POS (5) errors.
The comparatively high number of POS errors in 3 is
above all caused by confusion between nom. and acc.
sg. neutre and could certainly be reduced by training
the tagger with only a few similar texts.

At the moment, three main areas forimprovement
of this tagger can be discerned. Firstly, a reliablees-
timation of probability values for rare lexemes and
for infrequent POS combinations is the central step
in improving the tagger. Application of the classical
forward-backward-reestimation actually lead to degra-
dation of the probability values (cmp. (Abney, 1996),
3). Although many other methods such as smoothing
probabilities or the use of neural networks were pro-
posed, Sanskrit offers a (partial) solution of this prob-
lem which is totally based on its lexicography. San-
skrit not only possesses a high number of homony-
mous, but also of synonymous words. Many of these

words are already integrated in a semantic network
(based on theOpenCyc ontology), which is contained
in the program database. To estimate probabilities,
groups of synonyms can be identified which desig-
nate the same sememe with a high degree of proba-
bility. In this sense, the group ”horse” is constituted
by {aśva, turaga, turam. ga, turam. gama, vājin, haya},
but not hari, which means ”Vis.n.u” in most cases.
If one of the words which is included in the group
”horse” is met in an unknown context (either lexical or
POS/morphological), the respective probabilities can
be estimated from the values given for other members
of the group.

Secondly, integration of rules can certainly im-
prove analysis. Due to lack of punctuation (see 1),
these rules should not describe well-formed and com-
plete phrases, but only check the coherence of few
members of a phraseP, i.e. a syntactic substructure
delimited bydan. d. as (chunk parsing). Some prelim-
inary tests with rules which reject paths during POS
tagging on the base of simple syntactic criteria turned
out to be successful.

Thirdly and finally, the strictseparation of tokeni-
sation and POS taggingis a constant source of errors.
Consider, for example, the simple sentencebrahm̄a
varam. te d̄asyati (”Brahm ā will give you a boon.”).

FISSCL-44

Proc. of FISSCL, Paris, October 29-31, 2007

nr. P S L rSL eS eL ePOS corr. phrases
1 22 89 139 0.64 4 6 2 10
2 17 48 88 0.55 2 4 6 5
3 20 135 157 0.86 0 2 9 13
4 8 49 86 0.57 8 4 1 0
5 24 123 167 0.74 8 5 15 10

Table 2: Error rates of the tagger in five short passages – Abbreviations:nr. : number of the passage,P: number of
phrases,S: number of strings,L : number of lexemes

Although the POS sequence [dat. sg.] - [3. sg. fut.]
is well established and would always be preferred to
the incongruent [nom. pl.] - [3. sg. fut.], during to-
kenisationte is interpreted as the nom. pl. masc. of
the pronountad due to its enormous frequency. Be-
cause the content of the best lexical path can not be
changed during POS analysis, the correct analysis for
te (dat. sg. oftvad) will never be activated. Possible
workarounds for this problem are a more flexible POS
analysis, which takes into account e.g. the first five lex-
ical resolutions, or a combination of tokenisation and
POS tagging in one procedure.

4. REFERENCES

1893.Parāśaradharmasam. hitā. Ācārakān. d. am.

Hartmann, Peter. 1955.Nominale Ausdrucksformen
im wissenschaftlichen Sanskrit. Carl Winter Univer-
sitätsverlag, Heidelberg.

Lawrence R. Rabiner. 1989. A tutorial on hidden
markov models and selected applications in speech
recognition.Proceedings of the IEEE, 77:257–286.

Steven Abney. 1996. InCorpus-Based Methods
in Language and Speech, Dordrecht. Kluwer Aca-
demic Publishers.

Robert Waring and Paul Nation. InVocabulary: De-
scription, Acquisition and Pedagogy. pages, 6–19,
Cambridge. Cambridge University Press.

Hellwig, Oliver. 2002. Sanskrit und Computer.
Ph.D. thesis, Freie Universit āt Berlin.

Gérard Huet. 2007. Shallow syntax analysis in san-
skrit guided by semantic nets constraints. InInter-
national Workshop on Research Issues in Digital Li-
braries.

FISSCL-45

Proceedings of the First International Symposium on Sanskrit Computational Linguistics, Paris,France, October 29-31, 2007

FISSCL-46

Inflectional Morphology Analyzer for Sanskrit

Girish Nath Jha, Muktanand Agrawal, Subash, Sudhir K. Mishra, Diwakar Mani, Diwakar

Mishra, Manji Bhadra, Surjit K. Singh

girishj@mail.jnu.ac.in

Special Centre for Sanskrit Studies

Jawaharlal Nehru University

New Delhi-110067

The paper describes a Sanskrit morphological analyzer that identifies and analyzes inflected noun-

forms and verb-forms in any given sandhi free text. The system which has been developed as java

servlet RDBMS can be tested at http://sanskrit.jnu.ac.in (Language Processing Tools > Sanskrit

Tinanta Analyzer/Subanta Analyzer) with Sanskrit data in Unicode text. Subsequently, the separate

systems of subanta and ti�anta will be combined into a single system of sentence analysis with karaka

interpretation. Currently, the system checks and labels each word as three basic POS categories -

subanta, ti�anta, and avyaya. Thereafter, each subanta is sent for subanta processing based on an

example database and a rule database. The verbs are examined based on a database of verb roots and

forms as well by reverse morphology based on Paninian techniques. Future enhancements include

plugging in the amarakosha (http://sanskrit.jnu.ac.in/amara) and other noun lexicons with the subanta

system. The ti�anta will be enhanced by the krdanta analysis module being developed separately.

1. Introduction

The authors in the present paper are describing the subanta and ti�anta analysis systems for

Sanskrit which are currently running at http://sanskrit.jnu.ac.in. Sanskrit is a heavily inflected

language, and depends on nominal and verbal inflections for communication of meaning. A fully

inflected unit is called pada. The subanta padas are the inflected nouns and the ti�anta padas are

the inflected verbs. Hence identifying and analyzing these inflections are critical to any further

processing of Sanskrit.

The results from the subanta analyzer for the input text fragment

***AÉ�Éëx�É AÉ��ÉM
�ÉÉ***
cÉ�É�ÉÉÈ oÉÉ�ÉM
ÉÈ AÉ�ÉëÉhÉÉ�Éç E±É�ÉÇ �Éc��Î��É | �É§É AÉ�Éë�
�ÉÉÌ�É �Év�ÉÎ��É �ÉëxÉ³ÉÉÈ cÉ "É#ÉÎ��É |

are displayed as follows –

AÉ�Éëx�É$SUBANTA_SUBANTA AÉ��ÉM
�ÉÉ [AÉ��ÉM
�ÉÉ (x§ÉÏÍ�É)ç�É) + xÉÑ, �Éë�É�ÉÉ, .M
#ÉcÉ�É] [*$PUNCT]

cÉ�É�ÉÉÈ [cÉ�É�É (�ÉÑÎ��É)ç�É) + 0ÉxÉç, �Éë�É�ÉÉ, oÉ1Ò�#ÉcÉ�É] oÉÉ�ÉM
ÉÈ [oÉÉ�ÉM
 (�ÉÑÎ��É)ç�É) + 0ÉxÉç, �Éë�É�ÉÉ, oÉ1Ò�#ÉcÉ�É]
AÉ�ÉëÉhÉÉ�Éç [AÉ�Éë (�ÉÑÎ��É)ç�É) + AÉ�Éç, wÉ4Ï, oÉ1Ò�#ÉcÉ�É] E±É�ÉÇ [E±�Éç+A�Éç, Ì²�ÉÏ�ÉÉ, .M
#ÉcÉ�É]
[�Éc��Î��É$VERB] [|$PUNCT] [�É§É$AV] AÉ�Éë�
�ÉÉÌ�É [AÉ�Éë�
�É+0ÉxÉç/vÉxÉç �Éë�É�ÉÉ/Ì²�ÉÏ�ÉÉ, oÉ1Ò�#ÉcÉ�É]
[�Év�ÉÎ��É$VERB] �ÉëxÉ³ÉÉÈ [�ÉëxÉ³É (�ÉÑÎ��É)ç�É) + 0ÉxÉç, �Éë�É�ÉÉ, oÉ1Ò�#ÉcÉ�É] [cÉ$AV] ["É#ÉÎ��É$VERB]

[|$PUNCT]

Those colored blue are non subanta categories and those colored red are possible errors. The

default black colored ones are the subanta padas analyzed.

The word ग�छि�त from the above input text resulted in the following output from the ti�anta

analyzer system –

�Éc��Î��É { (M
�É×9#ÉÉc�É) �É�ÉÝ (["#ÉÉÌ;�ÉhÉ] [AÌ�ÉOè�] [xÉM
�É9M
]) ([�ÉOè�]) Î>É ([�É?x�Éæ] [
�Éë�É�É-�ÉÑÂwÉ] [oÉ1Ò�#ÉcÉ�É]) }

2. The Subanta Anlyzer

The system accepts Unicode (UTF-8) sandhi free Devanagari Sanskrit inputs (word, sentence or

text) and processes it according to the following sequence -

 INPUT TEXT

 ↓
 PRE-PROCESSOR

 ↓
 VERB DATABASE� LIGHT POS TAGGING AVYAYA DATABASE

 ↓

 SUBANTA RECOGNIZERVIBHAKTI DATABASE

 ↓

 SUBANTA RULES� SUBANTA ANALYZER SANDHI RULES

 ↓
 SUBANTA ANALYSIS

The PREPROCESSOR does the simplification and normalization of the Sanskrit text (for

example, deletes Roman characters, other invalid words, punctuations etc). The POS TAGGER

identifies four categories AVyaya, VERB, PUNCTuation and SUBANTA. The SUBANTA

RECOGNIZER does vibhakti identification and isolation by searching the vibhakti database. The

SUBANTA ANALYZER does analysis by checking the subanta rule base and sandhi rules.

Analysis includes splitting the NPs into its constituents - base [(prātipadika) (PDK)], case-

number markers (kāraka-vacana-vibhakti).

3. Sanskrit sentence and basic POS categories

A Sanskrit sentence has NPs (including AVs), and VPs. Cordona
1
 (1988) defines a sentence as -

 (N – E
n
) p . . . (V – E

v
) p

After sup and ti� combine with PDK, they are assigned syntactico-semantic relation by the

kāraka stipulations to return complete sentences.

1
 George Cardona, 1988 Pā�ini, His Work and its Traditions, vol ... i (Delhi: MLBD, 1988)

3.1 Sanskrit subanta (inflected nouns)

Sanskrit nouns are inflected with seven case markers in three numbers. Potentially, a noun can be

declined in all three genders. Sanskrit noun forms can be further complicated by being a derived

noun as primary (k�danta), secondary (taddhitānta), feminine forms (strīpratyayānta) and

compounds (samāsa). They can also include upasargas and AVs etc. According to Pā�ini, there

are 21 case suffixes called sup (seven vibhaktis combined with three numbers)
2
, which can attach

to the nominal bases (PDK) according to the syntactic category, gender and end-character of the

base. Pā�ini has listed these as sets of three as:

su, au, jas

am, au�, śas

�ā, bhyām, bhis

�e, bhyām, bhyas

�asi, bhyām, bhyas

�as, os, ām

�i, os, sup
3

for singular, dual and plural
4
 respectively. These suffixes are added to the PDKs

5
 (any

meaningful form of a word, which is neither a root nor a suffix) to obtain inflected forms NPs.

PDKs are of two types: primitive and derived. The primitive bases are stored in ga�apā�ha [(GP)

(collection of bases with similar forms)] while the latter are formed by adding the derivational

suffixes. NPs are of mainly six types –

3.1.1 avyaya subanta (indeclinable nouns)

Avyaya subanta, remain unchanged under all morphological conditions
6
. According to Pā�ini

[2.2.82]
7
, affixes cāp, �āp, 	āp, (feminine suffixes) and sup are deleted by luk when they occur

after an AVs. Pā�ini defines AVs as svarādinipātamavyayam [1.1.36], k�nmejanta
 [1.1.38],

ktvā tosun kasuna
 [1.139] and avyayībhāvaśca [1.1.40]
8
 etc.

3.1.2 basic subantas (primitive nouns)

Basic subantas are formed by primitive PDKs found in the Panini’s ga�apā�ha. For our purpose,

all those nouns, the base or inflected form of which can be found in a lexicon can be considered

basic subantas. Sometimes, commonly occurring primary or secondary derived nouns, feminine

or compound forms can also be found in the lexicon. Therefore such subantas are also

considered basic and do not require any reverse derivational analysis unless specifically required.

2 x#ÉÉæ0ÉxÉ�ÉÉæOè��DÉ"�ÉÉÎ�"Éx)å�"�ÉÉ�"�Éx)�ÍxÉ"�ÉÉ�"�Éx)�xÉÉåxÉÉÇ)ç�ÉÉåxxÉÑ�Éç
3 xÉÑ�ÉÈ
4 ²è�ÉåM
�ÉÉåÌ;9#ÉcÉ�ÉæM
#ÉcÉ�Éå
5 A�É9#ÉFÉÉ�ÉÑ?�Éë��É�ÉÈ �ÉëÉÌ�É�ÉÌ;M
�Éç |1|2|45||, M×
KÉÌ®�ÉxÉ�ÉÉxÉÉMÉ |1|2|46||
6 xÉ;ØvÉÇ Ì§ÉwÉÑ Í�É)ç�ÉåwÉÑ xÉ#ÉÉ9xÉÑ cÉ Ì#É"ÉÌ£
wÉÑ |
 #ÉcÉ�ÉåwÉÑ cÉ xÉ#Éå9wÉÑ �É³É #�ÉåÌ�É �É;#�É�É�Éç || [�ÉÉå�É�É oÉëÉQhÉ]
7 A#�É�ÉÉ;É�xÉÑ�ÉÈ [2.4.82]
8 x#É?ÉÌ;Ì�É�ÉÉ�É�É#�É�É�Éç [1.1.36], M×
��Éå0É��ÉÈ [1.1.38], U�#ÉÉ-�ÉÉåxÉÑ�Éç-M
xÉÑ�ÉÈ [1.1.39], A#�É�ÉÏ"ÉÉ#ÉMÉ [1.1.40]

Such inflected nouns are formed by inflecting the base or PDKs (arthavadadhāturapratyaya

prātipadiakam) with sup. For example: rāma
, śyāma
, pustakālaya
, vidyālaya
 etc.

3.1.3 samāsānta subanta (compound nouns)

Simple words (padas), whether substantives, adjectives, verbs or indeclinables, when added with

other nouns, form samāsa (compound). Sanskrit samāsas are divided into four categories, some

of which are divided into sub-categories. The four main categories of compounds are as follows:

• adverbial or avyayībhāva,

• determinative or tatpuru�a,

• attributive or bahuvrīhi and

• copulative or dvandva. dvandva and tatpuru�a compounds may be further divided into

sub-categories

3.1.4 k�danta subanta (primary derived nouns)

The primary affixes called k�t are added to verbs to derive substantives, adjectives or

indeclinables.

3.1.5 taddhitānta subanta (secondary derived nouns)

The secondary derivative affixes called taddhita derive secondary nouns from primary nouns.

For example - dāśarathī, gau�a etc.

3.1.6 strīpratyayānta subanta (feminine derived nouns)

Sanskrit has eight feminine suffixes �āp, cāp 	āp, �ī�, �īn, �īp, u� and ti etc. and the words

ending in these suffixes are called strīpratyayānta For example - ajā, gaurī, mū�ikā, indrā�ī,
gopī, a��ādhyāyī, kurucarī, yuvatī, karabhorū etc.

4. Recognition of Sanskrit subanta

4.1 Recognition of punctuations

System recognizes punctuations and tags them with the label PUNCT. If the input has any

extraneous characters, then the input word will be cleaned from these elements (i.e.

‘normalized’) so that only Devanāgarī Sanskrit input text is sent to the analyzer. For example,

“?É/&^Z@#�É:, oÉÉ,’”:-=�ÉM
:” � ?É�ÉÈ, oÉÉ�ÉM
È

4.2 Recognition of Avyayas

System takes the help of avyaya database for recognizing AVs. If an input word is found in the

AVs database, it is labeled AV, and excluded from the subanta analysis as AVs do not change

forms after subanta affixation. We have stored most AVs in the avyaya database.

4.3 Recognition of verbs

System takes the help of verb database for verb recognition. If an input is found in the verb

database, it is labeled VERB and thus excluded from subanta analysis. Since storing all Sanskrit

verb forms is not possible, we have stored verb forms of commonly used 450 verb roots.

4.4 Recognition of subanta

Thus, a process of exclusion identifies the nouns in a Sanskrit text. After the punctuations,

avyayas and verbs are identified, the remaining words in the text are labeled SUBANTA.

5. Analysis of subanta

System does analysis of inflected nouns with the help of two relational database - examples and

rules. Brief description of these databases follows-

5.1 Example database

All complicated forms (which are not analyzed according to any rule) including those of some

pronoun are stored the database. For example: A1��Éç=Ax�É;+xÉÑ �Éë�É�ÉÉ .M
#ÉcÉ�É;A1�Ç=Ax�É;+xÉÑ
�Éë�É�ÉÉ .M
#ÉcÉ�É;AÉ#ÉÉ�Éç=Ax�É;+AÉæ �Éë�É�ÉÉ Ì²�ÉÏ�ÉÉ Ì²#ÉcÉ�É;AÉ#ÉÉÇ=Ax�É;+AÉæ �Éë�É�ÉÉ Ì²�ÉÏ�ÉÉ
Ì²#ÉcÉ�É;#É�É�Éç=Ax�É;+0ÉxÉ �Éë�É�ÉÉ oÉ1Ò�#ÉcÉ�É;#É�ÉÇ=Ax�É;+0ÉxÉ �Éë�É�ÉÉ oÉ1Ò�#ÉcÉ�É;�ÉÉ�Éç=Ax�É;+A�É Ì²�ÉÏ�ÉÉ
.M
#ÉcÉ�É;�ÉÉÇ=Ax�É;+A�É Ì²�ÉÏ�ÉÉ .M
#ÉcÉ�É

5.2 Rule database

The subanta patterns are stored in this database. This database analyzes those nouns which

match a particular pattern from the rule base. For example, ?É�ÉÈ, �É;Ï, ?�ÉÉ, �ÉÑx�ÉM
�É etc. First, the

system recognizes vibhakti as the end character of nouns. For example, ‘:’ is found in nominative

singular (1-1) like -?É�ÉÈ, v�ÉÉ�ÉÈ, xÉ#É9È, "É?�ÉÈ .M
È . The system isolates ‘:’ and searches for analysis

in the sup rule base. In the case of nominative and accusative dual (1-2/2-2), PDK forms will be

‘
Éæ’ ending, for example - ?É�ÉÉæ, v�ÉÉ�ÉÉæ, xÉ#ÉÉæ9, .M
Éæ. The system isolates ‘
Éæ’ and searches for analysis

by matching in the rule database. The sample data is as follows –

É=
É+xÉÑ �Éë�É�ÉÉ .M
#ÉcÉ�É;
É"�ÉÉ�Éç=+"�ÉÉ�Éç �É×�ÉÏ�ÉÉ cÉ�ÉÑ�ÉÏ9 �ÉgcÉ�ÉÏ Ì²#ÉcÉ�É;
É"�ÉÉÇ=+"�ÉÉ�Éç �É×�ÉÏ�ÉÉ cÉ�ÉÑ�ÉÏ9 �ÉgcÉ�ÉÏ
Ì²#ÉcÉ�É;"�ÉÉ�Éç=+"�ÉÉ�Éç �É×�ÉÏ�ÉÉ cÉ�ÉÑ�ÉÏ9 �ÉgcÉ�ÉÏ Ì²#ÉcÉ�É;"�ÉÉÇ=+"�ÉÉ�Éç �É×�ÉÏ�ÉÉ cÉ�ÉÑ�ÉÏ9 �ÉgcÉ�ÉÏ
Ì²#ÉcÉ�É;
å"�ÉÈ=+"�ÉxÉç cÉ�ÉÑ�ÉÏ9 �ÉgcÉ�ÉÏ oÉ1Ò�#ÉcÉ�É;"�ÉÈ=+"�ÉxÉç cÉ�ÉÑ�ÉÏ9 �ÉgcÉ�ÉÏ oÉ1Ò�#ÉcÉ�É;

5.3 verb data sample

"É#ÉÌ�É,"É#É�ÉÈ,"É#ÉÎ��É,"É#ÉÍxÉ,"É#É�ÉÈ,"É#É�É,"É#ÉÉÍ�É,"É#ÉÉ#ÉÈ,"É#ÉÉ�ÉÈ,"É#É�ÉÑ,"É#É�ÉÉ�Éç,"É#É��ÉÑ,"É#É,"É#É�É�Éç,"É#É�É,"É#ÉÉÌ�É,"É#ÉÉ#É,
"É#ÉÉ�É,A"É#É�Éç,A"É#É�ÉÉ�Éç,A"É#É�Éç,A"É#ÉÈ,A"É#É�É�Éç,A"É#É�É,A"É#É�Éç,A"É#ÉÉ#É,A"É#ÉÉ�É,"É#Éå�Éç,"É#Éå�ÉÉ�Éç,"É#Éå�ÉÑÈ,"É#ÉåÈ,"É#
Éå�É�Éç,"É#Éå�É,"É#Éå�É�Éç,"É#Éå#É,"É#Éå�É,oÉ"ÉÔ#É,oÉ"ÉÔ#É�ÉÑÈ,oÉ"ÉÔ#ÉÑÈ,oÉ"ÉÔÌ#É�É,oÉ"ÉÔ#É�ÉÑÈ,oÉ"ÉÔ#É,oÉ"ÉÔ#É,oÉ"ÉÔÌ#É#É
5.4 avyaya data sample

A,M
ÍMÉ�Éç,xÉ;æ#É,AM
x�ÉÉ�Éç,AM
ÉhQå�,AÎ��ÉxÉÉ�Éç,A��ÉÏ,AcÉÉåÈ,A)ç�É,A0ÉxÉë�Éç,Ag0xÉÉ,A�ÉÈ,AÌ�É,A�ÉÏ#É,A§É,A�É,A�
ÉÌM
�Éç,A�É#ÉÉ,A�ÉÉå,A®É,A±,A±ÉÌ�É,AFÉ?É�Éç,AFÉ?å±ÑÈ,AFÉ?åhÉ,AFÉÈ,AFÉx�ÉÉ�Éç,AÍFÉ,AÍFÉ1�Ë?,AFÉÑ�ÉÉ,AFÉÉåeFÉÈ,AF�É�
É�É�ÉÈ,AÌ�ÉvÉ�Éç,A�ÉÑ,A�ÉåM
FÉÉ,A�ÉåM
vÉÈ,A��ÉÈ,A��É?É,A��É?åhÉ,A��É�ÉÈ,A��É�Éç,A��É§É

5.5 Architecture of the system

The following model describes the interaction between multi-tiered architecture of the subanta

analyzer:

U S E R

↓↓↓↓ ↑↑↑↑

Request response

↓↓↓↓ ↑↑↑↑

Apache-tomcat

↓↓↓↓ ↑↑↑↑

Java servlet

↓↓↓↓ ↑↑↑↑

JDBC

↓↓↓↓ ↑↑↑↑

Database

5.6 Front-end: online interface

The Graphical User Interface (GUI) is produced by JSP (Java Server Pages). The JSP interface

allows the user to give input in Devanagari utf-8 format using HTML text area component. The

user interface is displayed as follows:

5.7 Back-end: database / txt files

There are two versions of the system; the server-based version connects to a MSSQL Server

2005 RDBMS through JDBC. The rule base, example base and other linguistic resources are

stored as Devanagari utf-8. The PC based portable version, for obvious reasons, cannot have

RDBMS support. Therefore, we have our rules and data stored in utf-8 text files as backend. A

design of the reverse subanta database is given below-

avyaya

avId

avyaya

meaning

dhatuPath

dhtuId

dhatu

gana

meaning

dhatuRoop

formid

dhatuid

form

tense

aspect

number

exceptionList

excepId

supId

exception

supExampleBase

exceptId

example

analysis

supRuleBase

supid

sup_character

baseEndChar

changeInBase

exceptionListId

The supRuleBase table has relations with the exceptionList table. Any exception figuring in the

rule base must have a description in the exception list. The table supExampleBase depends on the

exceptionList and must provide analysis for each example figuring in the exceptionList and

marked in the supRuleBase. The dhāturūpa object depends on the dhātupā�ha object while the

AVs is a floating object as of now. These linguistic resources are checked for recognition of

nouns, and the rules and example bases are searched for analysis. System uses some text/data

files whose samples have been given in earlier sections.

5.2 Database connectivity

The database connectivity is done through Java Database connectivity (JDBC) driver. JDBC

Application Programming Interface (API) is the industry standard for database independent

connectivity for Java and a wide range of SQL databases. JDBC technology allows using the

Java programming language to develop ‘Write once, run anywhere’ capabilities for applications

that require access to large-scale data. JDBC works as bridge between Java program and

Database. SQL server 2005 and JDBC support input and output in Unicode, so this system

accepts Unicode Devanagari text as well as prints result in Unicode Devanagri too
9
.

6. Limitations of the system

6.1 Limitations of the recognition process

This system has the following recognition limitations:

� at present, we have approximately verb forms for only 450 commonly found verb roots in

the verb database. Though it is very unlikely that ordinary Sanskrit literature will

overshoot this list, yet the system is likely to start processing verb forms as nouns if not

found in this limited database.

� at this point, the system will wrongly mark prefixed or derived verb-forms as nouns as

they will not be found in the verb database. The gains from the ti�anta analyzer will be

added here shortly to overcome this limitation.

� currently this work assumes sandhi free text. So, a noun or verb with sandhi is likely to

return wrong results. The gains from a separate research on sandhi processing will be

used to minimize such errors.

� currently, our AV database has only 519 AVs. It is not enough for AV recognition in

ordinary Sanskrit literature. In this case, the system is likely to start processing AVs as

nouns, if it is not found in AVs database.

� some forms ending in primary affixes look like nouns while they are AVs. For example:

�ÉÌf��ÉÑ�Éç, �ÉK#ÉÉ, AÉ;É�É, Ì#É1�x�É etc. System will incorrectly recognize and process them as

subantas.

� many nouns (for example, śt� pratyayānta in locative singular) look like verbs. These

will be wrongly recognized as verbs for example: "É#ÉÌ�É, �Éc��Ì�É, �Éf�Ì�É, cÉ�ÉÌ�É etc. To solve

this problem, we will have a hybrid POS category called SUPTIN for those verb forms

which are subantas as well.

9
 http://java.sun.com/products/servlet/

6.2 Limitations of the analysis process

The system has the following analysis limitations:

� same forms are available in the dual of nominative and accusative cases, for example,

?É�ÉÉæ, dual of instrumental, dative and ablative cases, for example ?É�ÉÉ"�ÉÉ�Éç, plural of dative

and ablative cases, for example ?É�Éå"�ÉÈ, dual of genitive and locative cases, for example

?É�É�ÉÉåÈ. In neuter gender as well, the nominative and accusative singular forms may be

identical as in �ÉÑx�ÉM
�Éç (1-1 and 2-1). In such cases, the system will give all possible

results as in

?É�ÉÉæ = AÉæ [�Éë./ Ì². Ì²#É.]
?É�ÉÉ"�ÉÉ�Éç = "�ÉÉ�Éç [�É×./cÉ./�ÉÇ. Ì²#É.]
?É�Éå"�ÉÈ = "�ÉxÉç [cÉ./�ÉÇ. oÉ1Ò�#É.]
?É�É�ÉÉåÈ = AÉåxÉç [wÉ./xÉ. Ì²#É.]
�ÉÑx�ÉM
�Éç = xÉÑ/A�Éç [�Éë./Ì². .M
#É.]
1�?åÈ =)�ÍxÉ/)�xÉç [�ÉÇ./wÉ. .M
#É.]

� some k�danta forms (generally lyap, tumun, and ktvā suffix ending) look like nouns (for

example - Ì#É1�x�É �ÉÌf��#ÉÉ, �É�#ÉÉ, �ÉÌf��ÉÑ�Éç, �É��ÉÑ�É, �Éå�ÉÑ�Éç, �Éë;É�É, Ì#É1�É�É etc.). In such cases, the

system may give wrong results as:

Ì#É1�x�É = Ì#É1� +)�xÉç wÉ4Ï .M
#ÉcÉ�É
�ÉÌf��#ÉÉ = �ÉÌf��#ÉÉ + xÉÑ �Éë�É�ÉÉ .M
#ÉcÉ�É
�É�#ÉÉ = �É�#ÉÉ + xÉÑ �Éë�É�ÉÉ .M
#ÉcÉ�É
�ÉÌf��ÉÑ�Éç = �ÉÌf��ÉÑ + A�Éç Ì²�ÉÏ�ÉÉ .M
#ÉcÉ�É
�É��ÉÑ�Éç = �É��ÉÑ + A�Éç Ì²�ÉÏ�ÉÉ .M
#ÉcÉ�É

� at this point, system does not have gender information for all PDKs, nor does it attempt to

guess the gender. This limitation is going to be minimized by plugging in the amarakośa

shortly.

� currently this system is giving multiple results in ambiguous cases, because the words as

analyzed a single tokens. This will be solved by adding the gains from the research on

kāraka and gender of nouns which concluded recently.

7. The ti�anta analyzer

Verbs constitute an important part of any language. A sentence indispensably requires a verb to

convey complete sense. Given the importance of verb and verb phrases in any linguistic data, it

is necessary to develop a proper strategy to analyze them. Creating lexical resource for verbs

along with other parts of speech is a necessary requirement. Sanskrit is a highly inflectional

language. It is relatively free word-order language. The semantic inter-relation among the

various components of a sentence is established through the inflectional suffixes.

Scholars have done efforts to analyze Sanskrit verb morphology, both in theory and in

computation. Some of the major works are listed below:

• Gerard Huet has developed a lemmatizer that attempts to tag inflected Sanskrit verbs

along with other words. This lemmatizer knows about inflected forms of derived stems

which are not apparent in the display of the main stem inflection. It, however, does not

attempt to lemmatize verbal forms with preverbs but only invert root forms. The site also

provides a long list of the conjugated forms of verb-roots in the present, imperfect,

imperative, optative, perfect, aorist and future tenses as a PDF document.

• Prajna project of ASR Melkote claims to do module generation and analysis of 400

important Sanskrit roots in three voices (Active, Passive and Impersonal), 10 lakāra, 6

tense and 4 moods,

• Aiba (2004) claims to have developed a Verb Analyzer for classical Sanskrit which can

parse Sanskrit verb in Present, Aorist, Perfect, Future, Passive and Causative forms. This

site actually works only for some verbs and accepts that the results are not reliable,

• Desika project of TDIL, Govt. of India claims to be an NLU system for generation and

analysis for plain and accented written Sanskrit texts based on grammar rules of Pā�ini's

Aś�ādhyāyī. It also claims to have a database based on Amarakośa and heuristics based on

Nyāya & Mīmāmsā Śāstras and claims to analyze Vedic texts as well,

• RCILTS project at SC&SS, JNU has reportedly stored all verb forms of Sanskrit in a

database,

• Śābdabodha project of TDIL, govt. of India claims to be an interactive application to

analyze the semantic and syntactic structure of Sanskrit sentences,

• The ASR Melcote website reports that a Sanskrit Authoring System is under development

at C-DAC Bangalore. The system is supposed to make making tools for morphological,

syntactic and semantic analyses with word split programs for sandhi and samāsa.

• Cardona (2004) discussed Pā�ini’s derivational system involving aspect of linguistics,

grammar and computer science.

• Whitney (2002) listed all the quotable roots of the Sanskrit language together with the

tense and the conjugation system.

• Mishra and Jha (2004) describe a module (Sanskrit Kāraka Analyzer) for identification

and description of kāraka according to Pā�inian kāraka formulations.

• Edgren (1885) discussed verb roots of Sanskrit language according to Sanskrit

grammarians.

• Joshi (1962) presented linguistic analysis of verb and nouns of Sanskrit language

• Jha and Mishra (2004) proposed a model for Sanskrit verb inflection identification that

would correctly describe verbs in a laukika Sanskrit text. They presented a module to

identify the verb by applying Panini rules in reverse with the help of a relational database.

This module can also be used to identify the types of sentences as active or passive voice with

complete reference of the verb.

Present work, which owes a lot to above listed efforts, has some specific features such as:

• The system takes into account the Pā�inian analysis and develops its methodology by

applying it into reverse direction.

• It aims at developing a comprehensive strategy so that any ti�anta can be analyzed with

the same technique.

• It can be further expanded and modified to recognition and analysis of denominatives

• it is an online servlet-unicode database system with input-output in Unicode only

The front-end of the ti�anta analyzer is as follows -

8. Sanskrit Verb-morphology

Verbs have been of central importance to Sanskrit grammarians. Yāska insisted so much on

them that he propounded that all the nominal words are derived from verb roots. Verbs convey

the sense of becoming
10

. Sanskrit follows a well defined process in the formation of padas.

Both noun padas (subanta) as well as verb padas (ti�anta) have to undergo certain inflectional

processes in which various nominal or verbal affixes are added to nominal or verbal base word

in order to obtain noun and verbal forms. The process is however more than mere addition as

there may occur certain morphophonemic changes in the base as well as in the affix in the

process resulting in a usable form. The verb forms are derived from verb-roots or dhātus.

10

 bhāvapradhānamākhyātam (Yāska, Nirukta)

These dhātus are encoded with the core meaning of the verb. These can be primitive
11

 or

derived
12

. Primitive verb-roots, which are around 2000 in number, have been listed in a

lexicon named dhātupā�ha. They are divided in 10 groups called ga�as. All the verb-roots of a

group undergo somewhat similar inflectional process. Derived verb-roots may be derived from

primitive verb-roots or from nominal forms. Prefixes also play an important role as they can

change the meaning of a verb root. These roots then have to undergo various inflectional

suffixes that represent different paradigms. In this process, the base or root also gets changed.

The chart given on the next page gives an overview of Sanskrit verb roots.

Verb-roots

8.1 Derived Verb-roots:

8.1.1 those derived from verb-roots:

• Causals (�ijanta) - The causals are formed by adding affix �ic to a primitive verb root.

They convey the sense of a person or thing causing another person or thing to perform the

action or to undergo the state denoted by the root.

• Desideratives (sannanta) - Desiderative of a primitive verb root is formed by adding

affix san to it. It conveys the sense that a person or thing wishes to perform the action or

is about to undergo the state indicated by the desiderative form. Any basic verb-root or its

causal base may have a desiderative form.

• Frequentatives (ya�anta) - Frequentative verbs import repetition or intensity of the

action or state expressed by the root from which it is derived. They can be of two types -

o Ātmanepada Frequentative (ya�anta) – affix ya� is added

o Parasmaipada Frequentative (ya�luganta) – affix ya� is added but deleted

11

 bhūvādayo dhātava
 (Pāņini 1/3/1)
12

 sanādyantā dhātava
 (Pāņini 3/1/32)

Primitive

(2000 listed)

Derived

Derived from verbs Denominatives

Causal

Desiderative

Frequentative

Divided in

10 ga�as

An illustration is given below of formation of derived verb-roots from a primitive verb root bhū.

--- (+ (ic) ---- bhāvay (to cause someone or something to be)

bhū (to be)----------- --- (+ san) ---- bubhū((to desire to be)

� --- (+ ya�) ---- bobhūya (to be repeatedly)

 (ya� deleted) ---- bobho/bobhav

These derived verb-roots, however, undergo similar operations, with some specifications, to

form verb forms.

8.1.2 those derived from nominal words

A large number of Sanskrit verb-forms can be derived from nominal words. These are known as

nāmadhātus (denominatives). Taking a nominal word as head, various derivational suffixes are

added to these to form nominal verb-roots. The sense conveyed by the nominal verb root

depends upon the suffix added to it. Yet, denominatives commonly import that a person or thing

behaves or looks upon or wishes for or resembles a person or thing denoted by the noun. These

denominatives, however, can be innumerable as there is no end to nominal words in Sanskrit.

 8.2 Process of formation of Sanskrit verb forms

A Sanskrit verb root may take various forms in different inflectional paradigms. Sanskrit has ten

lakāras, i.e. four moods (Indicative, Imperative, Optative, and Subjunctive) and six tenses

(Present, Imperfect, Perfect, Distant Future, Future and Aorist). The lakāras are named in C-V-C

format. The first consonant l signifies that the suffix has to be replaced by tin terminations

further. The vowels a, i, o, u, e, o, r distinguish one lakāra from another. Last consonant, either �
or �, signifies different operations. These lakāras are added to the root, as primary suffixes, so

that it denotes a meaning in the particular tense or mood indicated by that particular lakāra.

Verb inflectional terminations or conjugational suffixes are 18 in number. These are divided in

two groups – Parasmaipada and Ātmanepada, each having 9 affixes – a combination of 3

persons x 3 numbers. Thus each of the 18 terminations expresses the voice, person and number.

A verb is conjugated in either pada, though some of the roots are conjugated in both. For each

different lakāra, a root is affixed with these 9 terminations in a single pada. Again, there are

three voices- Active, Passive and Impersonal. Transitive verbs are used in the Active and Passive

voices while intransitive verbs are conjugated in the Active and Impersonal voices. The 18

inflection terminations are basically replacement of the lakāra or primary suffix. According to

Pā�ini, when a lakāra is added to a root, it is replaced by 18 terminations. Thereafter, one of the

18 remains to create a verb form.

For each separate lakāra, the 18 tin terminations are replaced by other forms, an illustration of

the replacement technique of Pā�ini. Thus ti, tu, tā, t etc. are the various replacements of same

affix tip in the environment of different lakāras.

Then we have certain characteristics (vikara�a) inserted between the root and the termination.

This characteristic can vary according to lakāra or the class of the verb root. For four of the

lakāras, we have śap as a characteristic – only for four ga�as.

Addition of one or more of 22 prefixes (upasargas) to verb roots can result in more variety of

forms. Derivative verb roots, both derived from verb roots as well as nominal words, also follow

the same process to form verb forms. There can be some specific rules and exceptions in some

cases. The following tree gives a rough estimate of all the possible verb-forms of Sanskrit.
13

.

VR [2000]

 ├ Causal ((ijanta)

 ├ Desiderative (sannanta)

 └ Frequentative (ya(anta/ya(luganta)

 + One normal form

 Denominatives

 | ↓
 TAM [10 lakāras]

 ↓
 ┌────────────┐

 Active Voice Passive/Impersonal Voice

 ↓ ↓
 10x9(3x3) forms 10x9(3x3) forms

 ↓ ↓
 22(+) prefixes 22(+) prefixes

The verb roots of different ga�as adopt certain terminations when ti� affixes are added to them.

Consequently, the verb roots of these classes form verbal bases ending in ‘a’. The ti� affixation

also influences the verb root and it undergoes several morpho-phonemic changes, for example,

having gu�a operation on the end vowel. The verb root can adopt certain more operations

resulting in the final verb-form.

bhū + ti(p)

↓

bhū + (ś)a(p) + ti (infixation of characteristic)

↓

bho + a + ti (penultimate vowel gunated)

↓

bhav a ti (ayādi sandhi)

As shown in an example, when suffix tip is added to verb-root bhū, we obtain bhavati as the final

verb form. This bhavati can be analyzed in bhav + a + ti. Here bhav is the prepared verbal base

whereas a+ti is the combination of ‘characteristic + conjugational affix.’ This can be cited as a

common analysis of most Sanskrit verb forms. The verbal base of a verb root remains same in all

its forms whereas the second combination is common for almost all the roots of a single ga�a.

The analysis applies to the first category of derived verb roots as well.

13

 Mishra Sudhir K., Jha, Girish N., 2004, Identifying Verb Inflections in Sanskrit morphology, In proc. of

SIMPLE 04, IIT Kharagpur, pp. 79-81.

 9. Analysis of Sanskrit verb forms

9.1 Strategy for regular verb forms

The simplest strategy for regular verb forms can be to store all the possible forms of all the verb

roots in any structured form. But given the enormity of Sanskrit verb-roots and the multiplicity

of inflectional paradigms, this approach is far from being practical. A better approach may be

arrived at by following the analytical method.

As illustrated above, Sanskrit verb forms are a blend of multiple morphemes which contain

relevant information. Analytically, we can say that the first element is the conjugational affix that

remains at the end of every verb form. These affixes have encoded information of pada (though

it is determined by the root), lakāra, person and number. Thus terminations can serve as the most

important thing to let us know about the paradigm information of any verb form. They can be a

tool to identify a verb form in a given text. The terminations, as they are basically replacements

of 18 original ti� affixes in different lakāras, differ among themselves according to the lakāra.

However, in each lakāra they are similar for all the verb roots of various groups, leaving some

exceptions. So, ti can be used to identify any verb form of present tense in parasmaipada. But

some terminations can vary among themselves for a group of ga�as. Then again, the

terminations may be changed due to morphophonemic environment, tā affix of lu� lakāra

changing to �ā with roots like yaj.

Further left we have the remaining morphemes of the various characteristics and increments

inserted between the verb root and terminations, in the process of their formation explained

above. So, bhvādiga�a verb forms, in conjugational lakāras, have ‘a’- a result of śap

characteristic; svādi roots have no, nu or nv - all of them remaining morphemes of śnu. Some

roots like that of adādi have no such characteristic sign infixed in them.

Then we have the modified stem of the verb root at the right end of the verb form. The

modification can be that of gu�a, v�ddhi or any other. Generally a root adopts a common stem in

all the forms for both the padas in conjugational lakāras. So, bhav is the stem for all the

parasmai forms in the conjugational lakāras. But there are exceptions to it to the extent that four

or five types can be found among nine forms of a single lakāra-pada.

Here, the first morpheme- the ti� termination is common among all the verb forms of a particular

pada-lakāra-person-number combination. Second constituent- the characteristic (existing in the

form of its remaining morpheme) and increments inserted in between may differ, yet being

almost the same in a particular group. The third constituent- the modified verb-root is particular

in the strict sense. In the analysis, the recognition of the ti� termination will identify a word as a

verb form and find out its pada-lakāra-person and number. The second morpheme can, in many

cases, be helpful to recognize the ga�a of a particular root because the characteristics in a lakāra

are determined by the ga�a that the root belongs to.

Thus the core of the analytical approach is that each ti�anta verb form can be analyzed to form a

unique combination of verbal stem + ti� termination; and we store both of these constituent parts

in separate tables. So, when it is to be analyzed, its constituent morphemes are recognized and

identified with the help of pre-stored structured data.

An example of this strategy is shown in the table given below. The first column demonstrates the

representative verb root of each class. When the verbal affix tip is added to each of them, it

undergoes certain morphological operations and results in the usable ti�anta verb form listed in

the second column. This is the forward Pā�inian process. The next column demonstrates the

reverse Pā�inian approach for analysis of verb forms. In the second column every form has ti

ending. When we remove this ending along with the conjugational affix, we obtain the storable

verbal base. Every verb form can be analyzed similarly in ending and remaining verbal base.

Verb-root Verb-form Verb-base

bhū bhavati bhav (-ati)

ad atti at(-ti)

hu juhoti juho(-ti)

div dīvyati dīvy(-ati)

su sunoti sun(-oti)

tud tudati tud(-ati)

chid
14

 chinatti chinat(-ti)

tan tanoti tan(-oti)

krī krī�āti krī(-�āti)

cur

 + ti �

corayati

 - ti �

coray(-ati)

 9.2 database tables for verb analysis

The database tables given below demonstrate the structure of storage of all possible verbal bases

of a verb root. As a sample data, five verb roots of different ga�as have been taken -

 Table of Verbal Bases

Verbal Bases

Frequentative

root ga�a pada seţ/
aniţ/
veţ

lakāra

Regular Causal Desider.

Ātmane Parasma

i

la�/lo�/
vli

bhav, bhāvay bubhū� bobhūy bobhav

,bobho

li� babhūva bhāvayā–/
m

la� abhav abhāvay

ali bhū bhāv

bhū bhvādi para

s

mai

seţ

lu� abhū abībhav

la�/lo�
/vli

ad,at āday jighats -

li� jaghāsa,

jaghasa

jak�a,āda

āday–

la� ād,āt āday

ali ad ād

ad adādi para

smai

seţ

lu� aghas ād

hu juhotyād para aniţ la�/lo�/ juho, hāvay juhū� johūy joho

14

 rudh shows an exceptional behaviour, so chid has been taken.

vli juhu,juhv

li� juhavā–/m,

juhāva,

juhuv

la� ajuho,ajuh

u

ali hū

i smai

lu� ahau

la�/lo�/
vli

dīvy devay didevi� dedīvya -

li� didev,didiv

la� adīvy

ali dīv

div divādi para

smai

seţ

lu� adev

The second table illustrates the structure of the storage of verbal terminations of five ga�as in

both padas for la� lakāra. More than one termination in a single box has been separated.

Table of Verbal Affixes

I per. II per.

III per. lakāra pada/ga�a

Sing Dual Plu. Sing. Dual Plu. Sing Dual Plu.

p
a
ra

sm

a
i

 ti/

ati/

oti/

īti

ta
/
ata
/
uta

nti/

anti

/van

ti

si/�i/
asi/

a�i/o
�i/osi

tha
/
atha
/
utha

tha/

atha/

utha

mi/

āmi/

omi

va
/
āva

/uva

āma

/

ma
/
uma

la�

āt
m

a
n

e

 te/īte

/ūte

ute/

īte

ete

aate/

īyāte/

uvāte

ante

/

ate/

īyat

e/uv

ate

se/

ī�e/

u�e

ase

ethe/

āthe/

īyāthe/

uvāthe

adhve

/

īdhve

/

udhve

e/
 īye/

uve

āvah

e/īva

he/u

vahe

āmah

e/īma

he/u

mahe

p
a
ra

s

m
a
i

 t/at tām/

atām

n/an
/a
 tam/

atam

ta/

ata

m/a

m

āva āma la�

āt
m

an
e

 ata etām/ anta athā

ethām adhv

am

e āvah

i

āmah

i

lu�

p
a
ra

sm

a
i

 īt i��ām i�u
 ī
 i��am i��a i�am i�va i�ma

āt
m

a
n

e

 i��a i�ātā
m

i�at

a

i��hā

i�āthā
m

idhva

m/idh

vam

i�i i�vah

i

i�ma

hi

For identification and analysis, the suffixes should be given a descending character sequence. So

ti of i�yati in bhavi�yati cannot create any ambiguity.

10. Problems and possible solutions

• Verb forms which have no mark of termination left in the end are difficult to identify

with the proposed module. So bhava, babhūva and other alike forms are to be stored

separately.

• Some forms which are not ti�anta but are similar to them like bhavati, bhavata
 which

are singular and dual of bhū in present parasmai third person, and also locative singular

and ablative/relative singular of nominal root bhavat. The resolution of ambiguity here

will demand involvement of semantic and syntactic analysis.

• Denominatives are formed by deriving verbal base from nominal base with the help of

affixes such as kyac, kāmyac, kya�, yak, kya� etc. and then adding various verbal

terminations to these verbal bases. Thus they undergo same operations and processes as

regular and derived verb forms. Still there analysis is difficult due to two reasons. Firstly,

nominal bases can be innumerable and thus the above stated strategy of storing the bases

of all the nominative verbal bases is impossible in this case. One has to follow the rule

based analytical approach. The verbal terminations can be determined with the help of

affix tables as denominatives are affixed with same verbal affixes. The remaining base,

however, has to be analyzed in order to infer the nominal base of that denominative. As

there are some common rules to derive the verbal stem from nominal base, we can

develop an analysis rule based module to identify the nominal root and can find its

meaning with the help of a lexicon.

• Addition of prefixes to the verbal bases may cause morphological as well as semantic

change to a verbal form. To identify one or more prefix in a verbal form, all the prefixes

have to be stored in a database table along with their meaning. The system will have to

check the input verbal form from left to identify single or combined prefixes. A prefix

can happen to completely modify the meaning of a verb. So, creating a separate table that

stores the altered meanings of various roots, when affixed with certain prefix, may be

helpful in this case.

11. Conclusion

The proposed strategy to analyze Sanskrit verb forms in given text is different from existing

works in many ways. It works with a reverse Pā�inian approach to analyze ti�anta verb forms

into there verbal base and verbal affixes. The methodology accepted to create database tables to

store various morphological components of Sanskrit verb forms is clearly in line with the well

defined and structured process of Sanskrit morphology described by Pā�ini in his A��ādhyāyī. It
comprehensively includes the analysis of derived verb roots also. Even in the case of verb roots

derived from nominal words, the table of affixes can provide assistance in order to separate the

denominative verbal base from the verbal terminations.

References

1. BHARATI, AKSHAR, VINEET CHAITANYA & RAJEEV SANGAL, 1991, A

Computational Grammar for Indian languages processing, Indian Linguistics Journal,

pp.52, 91-103.

2. BHARATI, AKSHAR, VINEET CHAITANYA AND RAJEEV SANGAL, 1995,

Natural Language Processing: A Paninian Perspective, Prentice-Hall of India, New

Delhi.

3. CARDONA, GEORGE, 1967, Pā�ini’s syntactic categories, Journal of the Oriental

Institute, Baroda (JOIB) 16: 201-15

4. CARDONA, GEORGE, 1988, Panini: his work and its tradition (vol.1), Motilal

Banarasidas, Delhi,

5. CARDONA, GEORGE, 2004, Some Questions on Pā�ini’s Derivational system, procs

of SPLASH, iSTRANS, Tata McGraw-Hill, New Delhi, pp. 3

6. JURAFSKY DANIEL AND JAMES H. MARTIN, 2000, Speech and Languages

Processing, Prentice-Hall, New Delhi

7. EDGREN , A. H., 1885, On the verbal roots of the Sanskrit language and of the Sanskrit

grammarians, Journal of the Americal oriental Society 11: 1-55.

8. HUET, G’ERARD, 2003, Towards Computational Processing of Sanskrit, Recent

Advances in Natural Language Processing, Proceedings of the International Conference

ICON, Mysore, India

9. JHA, GIRISH N. et al., 2006, Towards a Computational analysis system for Sanskrit,

Proc. of first National symposium on Modeling and Shallow parsing of Indian Languages

at Indian Institute of Technology Bombay, pp 25-34

10. JHA, GIRISH N, 2003 A Prolog Analyzer/Generator for Sanskrit Noun phrase Padas,

Language in India, volume-3,

11. JHA, GIRISH N, 2004, Generating nominal inflectional morphology in Sanskrit,

SIMPLE 04, IIT-Kharagpur Lecture Compendium, Shyama Printing Works, Kharagpur,

WB. Page no. 20-23.

12. JHA, GIRISH N., 1993, Morphology of Sanskrit Case Affixes: A computational analysis,

M.Phil dissertation submitted to J.N.U., New Delhi

13. JHA, GIRISH N., 2004, The system of Panini, Language in India, volume4:2,

14. JOSHI, S. D., 1962, Verbs and nouns in Sanskrit, Indian linguistics 32 : 60- 63.

15. KAPOOR, KAPIL, 1985, Semantic Structures and the Verb: a propositional analysis,

Intellectual Publications, New Delhi

16. MISHRA SUDHIR K., JHA, GIRISH N., 2004, Identifying Verb Inflections in Sanskrit

morphology, In proc. of SIMPLE 04, IIT Kharagpur, pp. 79-81.

17. MISHRA, SUDHIR K & JHA, GIRISH N, 2004, Sanskrit Karaka Analyzer for Machine

Translation, In SPLASH proc. of iSTRANS, Tata McGraw-Hill, New Delhi, pp. 224-

225.

18. MITKOV RUSLAN, The Oxford Handbook of Computational Linguistics, Oxford

University Press.

19. NARAYAN MISHRA, 1996, (ed). Kashika of Pt.Vamana and Jayaditya ,Chaukhamba

Sanskrit sansthan, Varanasi

20. NOOTEN, B. A. VAN, Pā�ini’s replacement technique and the active finite verb,

University of California, Berkeley.

21. SHARMA, RAMA NATH, 2003, The A�tādhyāyī of Pā�ini, Munshiram Manoharlal

Publishers Pvt. Ltd., Delhi.

22. SHASTRI, BHEEMSEN, Laghusiddhantakaumudi (1st part), Bhaimee Prakashan, 537,

Lajapatrai Market, New Delhi

23. SHASTRI, SWAMI DWARIKADAS, 2000, ‘The Mādhavīya Dhātuv�tti by

Sāya�acārya’, Tara Book Agency, Varanasi.

24. SUBASH & JHA, GIRISH N., 2005, Morphological analysis of nominal inflections in

Sanskrit, presented at Platinum Jubilee International Conference, L.S.I. at Hyderabad

University, Hyderabad, pp-34.

25. SUBASH, 2006, Machine recognition and morphological analysis of Subanta-padas,

M.Phil dissertation submitted to J.N.U., New Delhi.

26. UPADHYE, P.V., 1927, Dhāturūpacandrikā, Gopal Narayen & Co, Bombay.

27. WHITNEY, W.D., 2002, History of Sanskrit Grammar, Sanjay Prakashan, Delhi.

Web References:

• IIIT, Hyderabad, http://www.iiit.net/ltrc/Publications/Techreports/tr010/anu00kbcs.txt

(accessed: 22nd April 2007).

• Peter M. Scharf and Malcolm D. Hyman, http://sanskritlibrary.org/morph/ (accessed: 12

August 2006).

• Huet’s site http://sanskrit.inria.fr/

• Prajna system, ASR Melcote, http://www.sanskritacademy.org/Achievements.htm

• Aiba, Verb Analyzer for classical Sanskrit,

http://wwwasia.human.is.tohoku.ac.jp/demo/vasia/html/

• Desika, TDIL, Govt. of India, http://tdil.mit.gov.in/download/Desika.htm

• RCILTS, JNU, http://rcilts.jnu.ac.in

• Shabdabodha, ASR, Melcote, http://vedavid.org/ASR/#anchor2

PHONOLOGICAL OVERGENERATION IN PANINIAN SYSTEM

Malhar Kulkarni
IIT, Powai, Mumbai- 400076
malhar@iitb.ac.in

M.M.Vasudevashastri
Abhyankarashastri Pathashala,

Pune.

ABSTRACT

In this paper an attempt is made to study the prob-
lem of overgeneration that is caused by the application
of the system of P ān. ini The system of P ān. ini is made
up of certain rules stated by him and his commenta-
tors namely, Kātyāyana and Patañjali. These rules are
supposed to produce the forms that are used in the lan-
guage, i.e. Sanskrit. However, sometimes the technical
application of these rules produces such forms which
are not actually used in the language. In fact, some-
times it is beyond human capacities to use such forms.
In the present paper two such cases dealing with the
phonological overgeneration are studied and possible
solutions are proposed to avoid the problem.

1. INTRODUCTION:

It has been demonstrated by Kiparsky and Staal(1988)
how Paninian system functions on four levels, namely,
semantic, deep structure, surface and phonological.
This system however sometimes over-generates in per-
haps, some of these levels. Of course Pān. ini (P) has
no doubt laid down certain constraints with the help
of which the system produces supposedly un-over-
generated forms. Prince and Smolensky (2002), have
devoted a section on Panini’s theorem of constraint
ranking (5.3) Of course our judgement regarding the
over-generativeness of a rule in the As. t.ādhyāyı̄(A), it
must be admitted here, is based entirely upon whatever
evidance in the form of pre-paninian literature avail-
able to us.

2. PHONOLOGICAL OVER-GENERATION

This paper is devoted to phonological over-generation
that still happens with all the possible constraints ap-
plying. There are two aspects that are studied in this
paper,

(1) Nasalization and (2) Phonetic doubling

2.1. Nasalization:
8.4.45 states that yar1 occurring at the end of a pada, is
optionally, (preferably, according to Kiparsky1980:1)
substituted by the nasal, if a nasal follows.
(1)

etad murārih.
= etan murārih. / etad murārih. . . . 8.4.45

Kātyāyana(K) has added a Vārttika(V) on this
rule, to the effect that this nasalization takes place
permanently if the following nasal is a part of a suffix
(2)

tad + maya
= tan-maya . . . 8.4.45 + K’s V.
= tanmaya

2.1.1. Enviornment for nasalization:
However, if we look at the way P has stated this

rule, we have to take into account following table
which shows clearly all possible environments in
which this rule should apply and the possible results
in the form of substitution of a nasal consonant. The
top row and the left column, in the table, show the
possible environment. The bottom row shows the
resultant nasal consonant in place of the consonant
written in the same column in top row. Thus for

1These phonemes are- all the stops including the nasals, semi
vowels(y, r,l,v) and sibilants except h.

Proc. of FISSCL, Paris, October 29-31, 2007

instance,

[..y] + [n..] / [m..] / . . . 8.4.45 + K’s V
= [..y#] + [n..] / [m..] /

Table 1 shows that any consonant mentioned in the
top row occuring at the end of a pada and followed by
any of the nasal consonants mentioned in the left hand
column, is substituted by the nasal consonant shown
in the bottom row. # mark is used to show the nasal
feature in the bottom row. * shows that these substitu-
tions are not attested in Sanskrit. The order of sounds
followed by P in his pratyāhāra sūtras is maintained
here.

There are certain sounds in this table which are di-
rectly not applicable for this operation as they never
occur at the end of a pada in Sanskrit. Such sounds
are- y,l,, ı̀ , ñ , jh, bh, gh, d. h,dh, kh, ph, ch. Some
grammatical entries do end in some of these sounds
and hence it can be argued that by applying operations
related to 0 suffix, one can generate padas with these
sounds at the end. However, this argument does not
hold valid as in the case of these consonants, the other
rules namely, 8.2.30, 8.2.39 etc. will substitute them
with the other consonants.

Thus consider the following example-
(3)

gumph . . . Dhātupāt.ha 6.31
gumph + kvip . . . 3.2.178
gu ph + kvip . . . 6.4.24
gu ph + 0 . . . 6.1.67
= guph
guph + su . . . 4.1.1,2
guph + 0 . . . 6.1.68
gub . . . 8.2.39
gub/gup . . . 8.4.56
= gub / gup

In the same way, other consonants will be substi-
tuted.

2.1.2. Overgenerated nasalization:
Now the rule, applied to all the remaining conso-

nants should also apply to the following example-
(4)

catur mukha 8.4.45
catu n. mukha
= catu n. mukha

However, this resultant form is not acceptable in
Sanskrit. This is clearly an over- eneration.

8.4.58 states the substitution of a nasal in place of
an anusvāra when followed by almost same conso-
nants(called as yay by P) mentioned in the top row of

Table 1 above except the last three. The rule can be
shown as-

[. . . anusvāra] + [yay. . .]
= [. . . nasal] + [yay. . .]

Thus by applying this rule we get forms like kan. tha,
aı̀kita, gum. phita etc. Consider however, the following
example-

(5)
kun. d. am rathena
kun. d. am. rathena . . . 8.3.23
kun. d. an. rathena . . . 8.4.58

The resultant form here is not acceptable in Sanskrit.
This is again over-generation.

One may argue about redundancy being the feature
of use of the pratyāhāras in the metalangauge of How-
ever, the tradition has taken pains in creating a con-
straint to check such forms in the form of statements
in this regard. Pa in the context of the above example
says-

rephos. man. ām savarn. ā na santi 2. (the sounds r and
the sibilants do not have any homogenious(nasal))

There are at least some constraints in the form of
statements of the later commentators to check the over-
generation as shown above. However, in the case of
phonetic doubling mentioned below, we see hardly any
constraint to check the overgeneration.

2.2. Phonetic doubling:
P in his A has dealt with the process of reduplication
at three places; (i) 6.1.1-123, (ii) 8.1.1-15, (iii) 8.4.46-
52. (i) deals with the reduplication of verbal roots in
the forms of present as well as perfect tense and also in
forming complex verbal roots such as desiderative and
frequentative. In a nutshell, this reduplication applies
to the aı̀ga in Paninian terminology. (ii) deals with the
reduplication of the entire pada. The last section in the
A mentioned above, deals with the reduplication of the
consonants. The paninian tradition has augmented the
existing set of rules laid down by P in this section, in
the form of Vārttikas (maily written by K) in this re-
gard and the later tradition has interpreted certain state-
ments of Patañjali(Pa) in such a manner that the resul-
tant forms can only be termed as over-generated ones.
The later paninian tradition has done this exercise at
many places and has come up with such overgenerated

2VyākaraëaMahābhās. ya of Patañjali, 2001, Vol.1, p 130.
3More recently, Kiparsky in a forthcoming article available on

his webpage, has discussed it.

FISSCL-68

Proc. of FISSCL, Paris, October 29-31, 2007

Table 1: Consonants and their substitutes according to 8.4.45
y v r l ñ m ṅ n. n jh bh gh d.h dh j b g d. d kh ph ch t.h th c t. t k p ś s. s

ṅ
ñ
n.
n
m

y v n. l ñ m ṅ n. n ñ m ṅ n. n ñ m ṅ n. n ṅ m ñ n. n ñ n. n ṅ m ñ n. n
* # * * *

Table 2: Enviornment for Phonetic doubling

1 2 3 Consonant
Reduplicated

4 Rule of Panini

vowel r/h yar — 8.4.46
— vowel yar No vowel 8.4.47
vowel Yan. may — K & Pat on

8.4.47
vowel may yan. — As above
— Ś ar khay — As above
— khay Ś ar — As above

forms. Tne such extreme cases are presented in this
paper and an attempt is made to study the approach of
the Paninian system to handle this phenomenon.

(6) putrādinı̄ tvam asi pāpe

(Oh! son-eater woman, shame on you!)

puttrādinı̄ sarpin. ı̄

(she-snake is son-eater.)

In this case, t is seen reduplicated alongwith the
change in the meaning. This case is noted by 8.4.48.

2.2.1. Enviornment for Phonetic doubling:

In the same section, some other phonemes are also
noted for their reduplicated occurrence. K and pat
have also noted down this tendency in some other
phonemes. These phonemes are- same mentioned in
fn 2. In table 2 they are referred to as yar, as used by P.
In the table 2, these rules are explained with all details,
namely environments- prior and posterior

Here 1 , 2 , 4 refer to the environment for phonetic
doubling. The order indicates the positions of these
environments and the position of the phoneme redu-
plicated. The examples for these two rows are-

(7) haryyanubhavah.
(h a-r-y anubhavah. > phonetic doubling of y)

(8) (a)rāmātt
(rām ā-t-(no vowel) > phonetic doubling of t)

(b) sudhdhyupāsyah.
(s-u-dh-y upasyah > phonetic doubling of y).

2.2.2. K and Pa on the environment for phonetic
doubling:
While commenting upon 8.4.47, K notes- dvirva-

cane yan. o mayah. . On this Pa has a two fold comment.
He says-

dvirvacane yan. o maya iti vaktavyam.
Kim udāharan. am yadi yan. a iti
pañcamı̄ maya iti s. as. t.hı̄
ulkkā valmmikam ity udahāran. am. Atha maya
iti pancamı̄ yan. a iti s. as. t.hı̄
dadhyyatra madhvvatrety udāharan. am

This means- In the rules dealing with the process of
phonetic doubling, the words yan. o mayah. should be
stated. What is the example ? If yan. ah. (yan is y, v,r,
l) is taken to be ablative and mayah. (may is all stops
except nasal palatal) is taken to be genitive, then the
examples are –

(9) ulkkā / valmmikam

and if mayah. is taken to be ablative and yan. ah. is
taken to be genitive, then the examples are-

(10)dadhyyatra / madhvvatra.

Same argument is applied to another statement of
K, namely ś arah. khayah. 4 which provides us with the
following examples-

(11) sththālı̄ / sththātā

(12) vatssah. / kssı̄ram / apssarāh.

This way of interpreting the statements of K on the
rules of P becomes a peculiar feature of the system of
paninian grammar. Later tradition of paninian gram-
mar thus by interpreting statements of K and Pa and

4This statement means that khay is reduplicated if it occurs af-
ter śar and śar is reduplicated if it occurs after khay. śar stands for
all the sibilants except h and khay stands for all the voiceless stops.

FISSCL-69

Proc. of FISSCL, Paris, October 29-31, 2007

P have noted down forms which we here address as
overgenerated forms.

We note that this feature is also noted by non-
paninian systems such as Kātantra. A commentary
on PrakriyāKaumudı̄ namely Prakāś a notes that ac-
cording to Kātantra school the phonetic doubling in a
particular case will give rise to only 32 forms and not
more5.

2.2.3. Twice Occurences of same consonant in San-
skrit
It is noteworthy to study the structure of the con-

sonant cluster in Sanskrit. A list of such clusters is
available in Coulson Michael, 2003, p 22-24. We con-
centrate on a cluster of two consonant of same phonetic
value. In other words, we concentrate on the twice oc-
currence of the same consonant. In the table 3, a list of
such consonant clusters is provided. Table 3 shows us
the consonants which can have twice occurrence with-
out applying the rules of phonetic doubling.

Table 3: Twice occurences of same consonant

k (i)Final + initial of the next word
(ii)Prefinal

g Final + initial of the next word
c Final + initial of the next word
j Final + initial of the next word
t Final + initial of the next word
d Final + initial of the next word
p Final + initial of the next word
b Final + initial of the next word
˙n Final + initial of the next word
n (i) Final + initial of the next word

(ii)Pre-final
.n Final + initial of the next word
m Final + initial of the next word
´s Final + initial of the next word
.s Final + initial of the next word
s Final + initial of the next word

A careful glance at table 3 will point out that all
these consonants fall in the domain of the application
of the phonetic doubling rules mentioned above in Ta-
ble 2. Therefore, if the rule for phonetic doubling is
applied to these already existing two consonants, we
get three same consonants occurring one after another.
Such a form is noted to exist optionally by P in the case
of consonants except nasals by the 8.4.65.

5PrakriyāKaumudı̄, 2000, Vol.I, p 158.

2.2.4. Generation of Phonetic doubling in later tra-
dition:

A 17th century grammar text, Vaiyākaran. a-
SiddhāntaKaumudı̄ (VSK) records following cases of
phonetic doubling-

(13) rāmātt rāmādd./ VSK 206, dvitve rūpacatus. t.ayam. (in

the forms rāmāt and rāmād, after applying the rules of phonetic

doubling we get 4 forms).

(14) aidhidhvam / VSK 2258, dhad. hayor vasya masya ca

dvitvavikalpāts.od. as.arūpān. i. (by reduplicating v and m when

immediately before dha and d. ha we get 16 forms.)

(15)sam. skartā / VSK 138, anusvāravatām anusvārasyāpi

dvitve dvādasa. (after reduplicating the anusvāra in the forms

already containing it, we get 12 forms).

(16) gavāk / VSK 443

Cases (15) and (16) deserve a special attention as
they pose a problem.

2.2.4.1. 2.2.4.1 Generation of Phonetic doubling in
the forms of sam. skartā
(15) sam. skartā - This word is formed in the follow-

ing way6-

sam + kartā
sam + s- kartā . . . 6.1.134
sar + s-kartā . . . 8.3.5
sam. r + s-kartā . . . 8.3.2 / 8.3.4
sam. s + s-kartā . . . 8.3.15

Along with this form there is an optional form that
is available in which in place of m. there occurs an
anusvāra. In the following two tables (Table 4 and
Table 5), forms with m. and anusvāra are presented.

In Table 4 and 5, we see phonetic doublings of s ,
t , k and more problematically of the anusvāra. This
phonetic doubling of anusvāra is based on the argu-
ment of K that ayogavāha7 s are to be included in
the pratyāhāra at. as well as śar by the statement-
ayogavāhānam at.s.un. atvam śars. u jaś tvas. atve.

6I have to turn to Devnagari fonts for these two case to stress
the amount of problem.

7The term ayogavāha refers to anusvāra, visarga, jihvāmulı̄ya
and upadhmānı̄ya, Vy\=akaraëaMahābhās.ya of Patañjali, 2001,
Vol.1, p 132.

FISSCL-70

Proc. of FISSCL, Paris, October 29-31, 2007

Table 4: Forms of sam. skartā with a first nasal vowel

2.2.4.2. 2.2.4.2 Generation of Phonetic doubling in
the forms of Gavāk
The Paninian Dhātupāt.ha notes that the root añc

is used in two senses viz. gati(to go) and pūjana(to
worship/ respect). In the sense of ‘one who goes to a
cow’ and in the sense of ‘one who worships a cow’,
the derivations that take place according to the rules of
A are shown in the table 6 and table 7 respectively.

In the above tables, the underlined forms are the forms
of a noun derived from a verbal root. Note that the dif-
ference in the forms in these tables is a mere n which

Table 6: Derivation of Gavāk (one who goes to a cow)

go + añc . . . (in the sense of to go)
go + añc + kvin . . . A. 3.2.59
go + ac . . . A 6.4.24, A.6.1.67
goc / go ac . . . A 6.1.123
goc / gavāc / go ac . . . A.6.1.109,122,123,

Table 7: Derivation of Gavāñc (one who worships a
cow)

go + añc . . . (in the sense of to go)
go + añc + kvin . . . A. 3.2.59
go + añc . . . A 6.1.67
goñc / gava añc . . . A 6.1.123
goñc / gavāñc / go añc . . . A.6.1.109,122,123,

has brought about a sea of change in the meaning as
well as the form itself. That is why P has noted them
with all their variations.

When we take these 6 forms as the base and start
adding the sup terminations, we get tables 8 and 9 for
these two tables. Tables 8 and 9 correspond to Ta-
bles 6 and 7 mentioned above. These are the forms
in neuter gender. There are certain specific processes
for neuter forms. That is why they are selected here.
In these tables, in each slot, there are many optional
forms shown. They result out of the optional applica-
tion of the rules namely, 6.1.109, 6.1.122 and 6.1.123.

The final square in Table 9 has got 9 forms. The last
3 forms are a result of the application of the statement
of K8 according to which the 1st class consonant is re-
placed by the 2nd class consonant of the same class.
Thus we see here k is replaced by kh. These are the
forms, we can say on the authority of A and K, which
are actually spoken by people. So far there is no prob-
lem. When we apply the rules of phonetic doubling
of certain consonants to these abovementioned Table 8
and 9, we start facing a problem.

2.2.4.3. Effects of phonetic doubling on forms in
Tables 8 and 9:
In Table 10 and 11 (as shown in the appendix), the

reduplicated forms of the forms mentioned in Table 8
and 9 respectively are presented.

In the table 10 (as shown in Appendix), we note that
the phonetic doubling of k, g, ñ, , y, m has increased the
number of forms (which are indicated in each square).

8cayo dvitı̄yā śari paus. karasādeh. / on 8.4.48

FISSCL-71

Proc. of FISSCL, Paris, October 29-31, 2007

The reasoning for the phonetic doubling of k, g, ñ is
8.4.47. The reasoning for the phonetic doubling of y
and m is the same as mentioned in Table 5 namely,
dvirvacane yan. o mayah. . We also note that there is a
phonetic doubling of even a visarga in certain forms.
The reasoning for this phonetic doubling is same as
mentioned after Table 5, namely, inclusion of visarga
in the pratyāhāra yar. Also there is nasalization which
is marked by a sign on certain forms which has added
those many forms.

We note that in the table 11 (as shown in the Ap-
pendix) the following consonants apart from the ones
mentioned in Table 7 are reduplicated- ı̀, s. . The rea-
soning for phonetic doubling of ı̀ is 8.4.47 and for s. is
the one mentioned in Table 4. namely, ś arah. khayah. .
We also note that in some forms even the visarga is
reduplicated like in the previous table. In Table 10 and
11 (as shown in the Appendix), we also note that in
some forms three consonants are simultaneously redu-
plicated. We also see that nasalization is marked with
the sign in some forms.

Thus if we compare the tables 10 and 11 (as shown
in the Appendix) statistically we come up with the
following picture-

Unduplicated Duplicated + Nasalized
49 (Table 8) 196 (Appendix: Table 10)
69 (Table 9) 267 (Appendix: Table 11)

If we are adopting the Paninian framework for gen-
erating forms by machine we will face similar prob-
lems if we apply the rules of phonetic doubling .

3. PROPOSED SOLUTION :

This overgeneration of forms is caused by-

(i) redundency of the pratyāhāra.

(ii) application of the rules of phonetic doubling me-
chanically.

(iii) application of statements and interpretations of
later paninian commentators.

To solve this problem we propose the following:
If we are going to apply the rules of phonetic dou-

bling we must make a rule that -

R1 The visarga should never be reduplicated.

R2 An anusvara should never be reduplicated.

R3 The rule of phonetic doubling should not be ap-
plied more than once to one consonant.

R4 The rule of phonetic doubling should not be ap-
plied to more than one consonant simultaniously.

In order to remove the redundency, we have to rely
upon the statements of the later comentators and take
note of their statements and modify the rule accord-
ingly.

4. ACKNOWLEDGEMENT

I wish to express gratitude to my students
Ms.A.Ajotikar, Ms.T.Aajotikar and Ms.Sarnaik,
at the Abhyankarashastri Pathashala, Pune for helping
me type out the forms in tables presented in this
paper. I also wish to express my gratitude to all the
scholars who made suggestions and remarks which
helped improve this article immensely. I wish to thank
Prof. Kiparsky for providing me with the details of
the reference of one of his forthcoming publications. I
wish to thank also my student Ms. Chatali Dangarikar
for helping me format the text of this article.

5. REFERENCES

K. V. Abhyankar, editor. 1943. Vyākaran. a-
Mahābhās. ya of Patañjali with Marathi Translation
(7volumes). D.E.Society. reprint, Sanskrit Vidya
Parisamstha, Pune, 2007.

Prof. Balshastri, editor. 2001. Vyākaran. a-
Mahābhās. ya of Patañjali, alongwith Pradı̄pa, Udy-
ota and Śabdakaustubha,. Pratibha Prakashan, New
Delhi. edited originally by Shri. GuruprasadShastri,
reedited by Prof. Balshastri.

B.K.Dalai, editor. 2007. Phonology, in Studies
in Sanskrit Linguistics,. Bharatiya kala Prakashan,
New Delhi.

Otto Böhtlingk, editor. 1998. Pān. inis Grammatik.
Motilal Benarsidass, New DElhi, 1st indian edition
edition. As.t.ādhyāyı̄ edited and translated into Ger-
man.

FISSCL-72

Proc. of FISSCL, Paris, October 29-31, 2007

George Cardona and Dhanesh Jain, editors. 2003.
Indo-Aryan Languages. Number 11 in Routledge
Language Family Series. New Fetter Lane, London
EC4P4EE.

George Cardona. 2004. Recent researches in
Paninian studies. Motilal Benarsidas, , Delhi, 2nd
revised edition edition.

Michael Coulson. 2003. Teach yourself Sanskrit.
Hodder Headline Ltd., revised by prof.richard gom-
brich and dr james benson edition. 1st published in
1976.

Dr. GirijaKumar Dixit, editor. 1987.
Paribhāśenduśekhara of Nāgeśa, alongwith
the commentary Sarvamaṅgalā,. Sampurnananda
Sanskrit University, varanasi edition.

Dr. Sitaramashastri, editor. 1996.
Br. hacchabdenduśekhara of Nāgeśa (in 3 parts).
Sampurnananda Sanskrit University, Varanasi, 1st

edition edition.

G.Caturveda and P.Bhaskar, editors. 1987.
Vaiyākaran. a-Siddhānta-Kaumudı̄, alongwith Bāla-
Manoramā and Tattvabodhinı̄,. Motilal Benarsi-
dass.

Paul Kiparsky and Staal J.F, 1988. Modern Stud-
ies in Sanskrit, chapter Syntactic and Semantic re-
lations in Panini.

Paul Kiparsky. 1980. Panini as a variationist.
Centre of Advanced Study in Sanskrit,University
of Poona, in collaboration with MIT press,, Cam-
bridge(Massachusetts, U.S.A.) and London (Eng-
land).

Paul Kiparsky. (forthcoming). Redu-
plication in stratal ot. Available at:
http://www.stanford.edu/ kiparsky/Papers/redupli-
cation.pdf.

Pt. Muralidhar Mishra, editor. 2000.
Prakriyākaumudı̄ with Prakāśa (in 3 parts).
Sampurnanada Sanskrit University, Varanasi.

Abbreviations
A - As. t.ādhyāyı̄
K - Kātyāyana
P - Pān. ini
Pa - Patañjali
V - Vārttika
VSK - Vaiyākaran. a-Siddhānta-Kaumudı̄

FISSCL-73

Proc. of FISSCL, Paris, October 29-31, 2007

Appendix: Table 10:Phonetic doubling in the declension of Gavāc

FISSCL-74

Proc. of FISSCL, Paris, October 29-31, 2007

Appendix: Table 11:Phonetic doubling in the declension of Gavāñc

FISSCL-75

Proceedings of the First International Symposium on Sanskrit Computational Linguistics, Paris,France, October 29-31, 2007

FISSCL-76

 69

Modeling P‡ıinian Grammar
Peter M. Scharf

Brown University
25 June 2007

It is possible to achieve the
implementation of generative grammars
and parsers of Sanskrit using various
methodologies which have varying
degrees of affinity to those of P‡ıinian
grammar. The current paper compares
obvious methods to implement various
aspects of Sanskrit grammar
computationally, comments upon the
degree to which they approach or depart
from P‡ıinian methodology and
exemplifies methods that would achieve a
closer model.

I . Differences among the
Sanskrit grammarians and
even among P‡ıinians.

In attempting to create a computational
model of P‡ıinian grammar, the first
problem is to determine which P‡ıinian
grammar. The A˘Ò‡dhy‡y„ itself (late 5th
c. B.C.E.), consisting of nearly 4,000
rules, is known to have undergone
modifications. K‡ty‡yana's
approximately 4,300 v‡rtikas (4th-3rd c.
B.C.E.) suggest modifications to 1,245 of
P‡ıini's rules, usually in the form of
additions (upasaÔkhy‡na). Pata§jali's
Mah‡bh‡˘ya (mid-2nd c. B.C.E.) rejects
many additions suggested by K‡ty‡yana,
suggests other desiderata (i˘Òi), and
articulates principles presupposed in the
grammar. Many of the modifications
K‡ty‡yana and Pata§jali suggest are
found adopted in the form in which the
rules are found in Jay‡ditya and
V‡mana's K‡˜ik‡, the oldest extant
complete running commentary on the
A˘Ò‡dhy‡y„ (7th c. C.E.). Does one wish
to model the A˘Ò‡dhy‡y„ alone? The
A˘Ò‡dhy‡y„ and K‡ty‡yana's v‡rtikas?
The grammar as known and approved by
Pata§jali in the Mah‡bh‡˘ya? Or the
grammar as found in the K‡˜ik‡?

II . Ambiguities in early
articulations explicated
differently by subsequent
Indian linguists .

Articulations of P‡ıinian grammar,
especially sÂtras and v‡rtikas isolated
from commentary, are subject to
ambiguities. These ambiguities are
resolved in different ways by different
commentators. Commentaries on
Pata§jali's Mah‡bh‡˘ya disagree with
each other; commentaries on the K‡˜ik‡
disagree with each other; and
BhaÒÒojid„k˘ita's Siddh‡ntakaumud„ (17th
c. C.E.) differs in its interpretation of
rules and procedures from Jay‡ditya and
V‡mana's K‡˜ik‡. Moreover,
subcommentaries differ in their
interpretations. Where ambiguities are
found, how are they to be resolved?
Using some particular commentator as
the authority? haphazardly? Or is one
going to come to an independent
judgment of the correct interpretation
after a critical evaluation of the various
interpretations?

Moreover, the supplements to the
grammar, particularly the lists referred to
in various rules (gaıas), most
prominently the list of roots, Dh‡tup‡Òha,
have undergone variation. Three
complete commentaries composed in
Sanskrit are extant on the P‡ıinian
Dh‡tup‡Òha, which is known only
through these commentaries: the
K˘„rataraÔgin„ of K˘„rasv‡min (early
twelfth century C.E. Kashmir), the
Dh‡tuprad„pa of Maitreyarak˘ita (mid-
twelfth century C.E. Bengal), and the
M‡dhav„yadh‡tuvÁtti of S‡yaıa
(fourteenth century C.E. Vijayanagara,
Karnataka). Will one use one of these?
A unified critical edition of them? Or
will one attempt to reconstruct the
Dh‡tup‡Òha as known to Pata§jali?

Before embarking on a computational
implementation of P‡ıinian grammar,
such decisions ought to be made. It may
prove very interesting to compare

 70

computational implementations based
upon different rule sets, different
interpretations, and different sets of
supplementary lists with each other and
with different sets of linguistic data. As I
have argued in two papers, with respect
to the derivation of subjunctives (2005)
and of the present stems of class eight
roots (forthcoming), systematic
comparison of linguistic descriptions
resulting from computational
implementations with each other and with
various collections of extant Sanskrit
texts may throw important light upon
interpretational and historical questions.

III . Utilization of contemporary
linguistic models, in
particular those derived from
P‡ıinian methodology, to
articulate P‡ıinian
methodology.

Indian grammatical commentaries
composed in Sanskrit over the last two
and half millennia are not the only
sources of P‡ıinian interpretation.
Recent work in theoretical and
computational linguistics has influenced
the interpretation of P‡ıinian grammar.

A. Influence of P‡ıin ian
methodolo gy on contemporary
l inguist ics general ly.

P‡ıinian grammar has had a profound
influence on modern linguistics. Apart
from the influence of ancient Indian
phonology on modern phonetic feature
analysis, and the emulation of ancient
Indian synchronic sound change laws by
diachronic laws of phonological change
in modern historical and comparative
linguistics, P‡ıinian grammar is the
archetype at the foundation of modern
generative grammar. From Chomsky's
first work on transformational grammar
in 1957 to the P‡ıinian grammars of
modern Indian languages such as
described for Hindi in Bharati et al 1995,
modern linguistic science has drawn
heavily from the concepts and procedures
of ancient Indian linguistics.

B. Influence of contemporary
l inguist ic models on the
in terpretat ion of P‡ıin ian
methodolo gy.

Concepts originally inspired by
ancient Indian linguistics have taken their
own shape in contemporary linguistics.
They have responded to different
concerns and been adapted to different
questions. These new concepts have
been applied by contemporary scholars to
the interpretation of P‡ıinian grammar.
One of the most prominent of these is the
idea that grammar consists of modules in
a generative hierarchy, or levels.

IV. Levels

A. Kiparsky's arch i tecture
Clearly influenced by Chomskian

generative grammar, Kiparsky and Staal
(1969) proposed that P‡ıinian grammar
contains rules in a hierarchy of four
levels of representation: semantics, deep
structure, surface structure, and
phonology. More recently Kiparsky
(2002) restates this scheme referring to
the four levels as follows: semantic,
morphosyntactic, abstract morphological,
and phonological. Three classes of rules
map prior levels onto subsequent levels:
(1) rules that assign k‡rakas and abstract
tense, (2) morphological spellout rules,
and (3) rules of allomorphy and
phonology. Rules incorporate conditions
at both the levels from which and to
which they map, as well as at prior levels
in a unidirectional derivation beginning
with semantics and ending with
phonology.

B. Houben 1999
Houben (1999) aptly criticized earlier

articulations of this four-level hierarchy
because they did not explicitly include
pragmatics and intentionality in the
semantic level and did not permit
semantic factors (including pragmatics
and intentionality) to serve as conditions
in phonological rules directly. In
addition, he criticized the portrayal of
P‡ıini's grammar as a complete
automaton that produces utterances from
meanings. He pointed out that there are
no rules that introduce verbal roots and
nominal stems based upon semantic

 71

conditions and that the fundamental
morphophonemic elements appear in
P‡ıinian derivations from the start. It is
therefore improper, he argued, to
characterize the grammar as originating in
semantics and culminating in
phonological form. Rather, he (1999: 48)
stated, it originates in meaning mixed
with form and culminates in a perfected
form.

C. The purpose of the science of
l anguag e

Houben is correct to point out that it is
not the function of the A˘Ò‡dhy‡y„ to
teach semantics. The science of grammar
does not teach the communication of
meaning that is already known from
ordinary usage; rather, it teaches correct
usage in the conveyance of the desired
meaning. In his very first v‡rtika
commented upon at length by Pata§jali in
the Paspa˜‡hnika, K‡ty‡yana places the
function of grammar in the context of
what is already known from ordinary
behavior. There is an established relation
between words and their objects, which
is known from ordinary usage, such that
certain words are used to denote certain
objects. The purpose of using speech
forms is to convey knowledge of objects
by following the conventions of ordinary
usage. Since this is the case, the purpose
served by the science of grammar is to
make known which speech forms among
those in use are correct and hence lead to
dharma. K‡ty‡yana states:

Siddhe ˜abd‡rthasambandhe lokato
'rthaprayukte ˜abdaprayoge ˜‡streıa
dharmaniyama˛, yath‡ laukikavaidike˘u.1
Since speech, its object, and the relation
between the two are established (and are
known) from ordinary usage, and since one
uses speech prompted by meanings in
accordance with ordinary usage, the science
(of grammar) restricts (usage to correct
speech forms) for the sake of dharma just as
(other disciplines restrict behavior) in
ordinary and Vedic affairs.2

D. Semantics
While it is ostensibly correct that the

A˘Ò‡dhy‡y„ does not include any rules
that are concerned with semantics to the
exclusion of syntax, morphology, and

1 K1.6.8.
2 Scharf 1995.

phonology, the system of rules clearly
presupposes that semantics drive the
derivation. Meaning is the reason for
speech. Under 1.1.44, Pata§jali describes
that the purpose of speech is to convey
understanding:

The use of words is for the purpose of the
comprehension of the objects they denote.
With the intention, "I will give the
understanding of an object" a word is used.3
Modeling the fact that a speaker

selects speech forms to use on the basis
of the meaning he wishes to convey, the
A˘Ò‡dhy‡y„ is composed in a manner that
selects certain speech forms for use on
the basis of certain semantic conditions.
Specific semantic factors pervasively
serve as conditions for the classification
of lexical items, and for the introduction
of k‡raka terms, cover symbols, and
speech forms.

1. Lexical organization
The use of words in rules to refer to

classes of words rather than just to their
own speech form is discussed in
Mah‡bh‡˘ya under 1.1.68 svaß rÂpaß
˜abdasy‡˜abdasa§j§‡. The word vÁk˘a
'tree', etc. in 2.4.12 vibh‡˘‡ vÁk˘amÁga...
refers to terms for species of trees.4 The
word sva 'property', etc. in 3.4.40 sve
pu˘a˛ refers to itself as well as to its
synonyms,5 while the word r‡jan in
2.4.23 sabh‡ r‡j‡manu˘yapÂrv‡ refers to
its synonyms but not to itself. Finally,
the word matsya in 4.4.35
pak˘imatsyamÁg‡nhanti refers to itself as
well as to terms for species of fish. The
use of words in the grammar to refer to
classes of words rather than to the speech
form itself succeeds through the
intermediary of the words meaning,
against the norm in the grammar for
words to refer just to their own form. By
referring to their meaning, in the way
words are ordinarily used, the meaning of

3 Arthagatyartha˛ ˜abdaprayoga˛. Arthaß
saßpraty‡yayi˘y‡m„ti ˜abda˛ prayujyate.
K1.105.2.
4 sittadvi˜e˘‡ı‡ß vÁk˘‡dyartham vt 5,
K1.176.25. The scheme of distinguishing the
ways in which words are used to refer to various
classes of words or to themselves proposed in
v‡rtikas 5-8 is not adopted in the A˘Ò‡dhy‡y„. It
nevertheless illustrates these various usages in
the grammatical treatise.
5 pitpary‡yavacanasya ca sv‡dyartham.

 72

the word can serve as the condition to
class groups of words of related
meaning.

There are 735 words used in the
locative to state semantic conditions in
rules (including repetitions and excluding
individual compound elements).
Conditions that serve to classify lexical
items include place (de˜a),6 district
(janapada),7 river (nad„),8 mountain
(parvata),9 measure (parim‡ıa),10
genus,11 species,12 or ethnicity (j‡ti),13
age (vayas),14 fish (matsya), conscious
being (cittavat).15

2. Semantic conditions for
k‡rakas, cover symbols, and
phonetics

It is well known that the terms dhruva
'fixed point', etc. in rules 1.4.24-55
dhruvamap‡ye Ÿp‡d‡nam, etc. serve as
semantic conditions for the introduction
of k‡raka terms, and that terms such as
bhÂta 'past', vartam‡na 'present', and
bhavi˘yat 'future', used in the locative in
3.2.84 bhÂte, 3.2.123 vartam‡ne laÒ, and
3.3.3 bhavi˘yati gamy‡daya˛, serve to
introduce l-affixes. Houben (1999: 46)
has illustrated the use of semantic and
pragmatic factors as conditions for purely
phonetic modifications in 8.2.82-108
v‡kyasya Òe˛ pluta ud‡tta˛, etc.

3. x-vacana
A number of rules explicitly use the

term vacana 'denoting' to designate the
semantic conditions that serve as the
criteria to class together words that
denote entities in major categories.
Hence semantic conditions serve to form
a class of words that denote entities other
than substances (asattvavacana),16 a class
of words that denote qualities

6 de˜a 3.3.78, 4.2.52, 4.2.67, 4.2.119, 5.2.105,
5.2.135, 6.3.98, 8.4.9; ade˜a 8.4.24.
7 4.2.81, 4.2.124.
8 4.2.85.
9 4.3.91.
10 4.3.153, 5.2.39.
11 j‡ti 4.1.161, 5.2.133; aj‡ti 5.4.37, 6.4.171.
12 6.3.103.
13 6.2.10.
14 vayas 3.2.10, 4.1.20, 5.1.81, 5.2.130, 5.4.141,
6.2.95; avayas 5.1.84.
15 5.1.89.
16 2.3.33 karaıe ca
stok‡lpakÁcchrakatipayasy‡sattvavacanasya.

(guıavacana),17 a class of words that
denote common properties
(s‡m‡nyavacana),18 or distinguishing
properties,19 and a class of words that
denote the essence (bh‡va) of what is
denoted by the stem after which certain
affixes forming such words occur
(bh‡vavacana).20

Similarly, other rules explicitly use the
term vacana to designate the semantic
conditions that serve as the criteria to
form narrower classes of lexemes subject
to common operations. Hence in one rule
semantic conditions serve to form classes
of indeclinables that denote proximity
(sam„pa), flourishing (samÁddhi), lack of
prosperity (vyÁddhi), absence of an object
(arth‡bh‡va), going beyond (atyaya),
unsuitability for the moment (asaßprati),
the appearance of a sound or word
(˜abdapr‡durbh‡va), posteriority (pa˜c‡t),
a meaning of yath‡, sequence
(‡nupÂrvya), simultaneity (yaugapadya),
similarity (s‡dÁ˜ya), success (saßpatti),
completeness (s‡kalya), end (anta), and
senses denoted by nominal terminations
and other affixes provided by rules 5.3.1-
26 (vibhakti).21 In other rules the term
vacana designates classes of words that
denote remembrance (abhij§‡),22 stages
of bodily growth (vayas),23 haste
(k˘ipra),24 wish (‡˜aßs‡),25 boundary

17 2.1.30 tÁt„y‡ tatkÁt‡rthena guıavacanena,
4.1.44 voto guıavacan‡t, 5.1.124
guıavacanabr‡hmaı‡dibhya˛ karmaıi ca, 5.3.58
aj‡d„ guıavacan‡deva, 6.2.24 vispa˘Ò‡d„ni
guıavacane˘u, 8.1.12 prak‡re guıavacanasya.
18 3.4.5 samuccaye s‡m‡nyavacanasya, 8.1.73
n‡mantrite sam‡n‡dhikaraıe s‡m‡nyavacanam.
19 8.1.74 vibh‡˘itaß vi˜e˘avacane bahuvacanam.
20 The term bh‡vavacana occurs in three sÂtras:
2.3.15 tumarth‡cca bh‡vavacan‡t, 2.3.54
ruj‡rth‡n‡ß bh‡vavacan‡n‡majvare˛, 3.3.11
bh‡vavacan‡˜ca, and the term
bh‡vakarmavacana in one: 6.2.150 ano
bh‡vakarmavacana˛.
21 2.1.6 avyayaß
vibhaktisam„pasamÁddhivyÁddhyarth‡bh‡v‡tyay
‡samprati˜abdapr‡durbh‡vapa˜c‡dyath‡nupÂrvy
ayaugapadyas‡dÁ˜yasampattis‡kaly‡ntavacane˘u
.
22 3.2.112 abhij§‡vacane lÁÒ.
23 3.2.129 t‡cch„lyavayovacana˜akti˘u c‡na˜,
5.1.129 pr‡ıabhÁjj‡tivayovacanodg‡tr‡dibhyo
Ÿ§, 6.3.85
jyotirjanapadar‡trin‡bhin‡magotrarÂpasth‡navar
ıavayovacanabandhu˘u.
24 3.3.133 k˘ipravacane lÁÒ.
25 3.3.134 ‡˜aßs‡vacane liÔ.

 73

(mary‡d‡),26 imagination or supposition
(saßbh‡vana),27 fitness (pary‡pti),28 half
(s‡mi).29 In commenting upon several of
these rules, the K‡˜ik‡ notes that the term
vacana is used to include synonyms of
the word that precedes it in compound.30

Elsewhere the term vacana explicitly
designates the semantic condition for a
particular triplet of nominal terminations,
secondary affix, or finished form
(nip‡tana). Such semantic conditions
include master („˜vara),31 virgin
(apÂrva),32 momentary (‡dyanta),33
particular sort or manner (prak‡ra),34 and
extolled (prakÁta).35 and dependent
(tadadh„na),36 The term vacana also
designates a broad class of semantic
conditions that serve as conditions for the
formation of tÁt„y‡tatpuru˘a compounds.
These include additional significance
such as praise or censure (adhik‡rtha).37

E. Onto logy
In addition to various specific

semantic factors that serve as conditions
for the classification of lexical items, and
for the introduction of k‡raka terms,

26 3.3.136 bhavi˘yati mary‡d‡vacane Ÿvarasmin,
8.1.15 dvandvaß
rahasyamary‡d‡vacanavyutkramaıayaj§ap‡trapr
ayog‡bhivyakti˘u.
27 3.3.155 vibh‡˘‡ dh‡tau sambh‡vanavacane
Ÿyadi.
28 3.4.66 pary‡ptivacane˘valamarthe˘u.
29 5.4.5 na s‡mivacane.
30 Under 3.2.112, 3.3.133, 5.4.5 the K‡˜ik‡
states: vacanagrahaıaß pary‡y‡rtham.
31 2.3.9 yasm‡dadhikaß yasya ce˜varavacanaß
tatra saptam„.
32 4.2.13 kaum‡r‡pÂrvavacane.
33 5.1.114 ‡k‡likaÛ‡dyantavacane.
34 5.3.23 prak‡ravacane th‡l, 5.3.69
prak‡ravacane j‡t„yar, 5.4.3 sthÂl‡dibhya˛
prak‡ravacane kan.
35 5.4.21 tatprakÁtavacane mayaÒ.
36 5.4.54 tadadh„navacane.
37 2.1.33 kÁtyairadhik‡rthavacane. The K‡˜ik‡
comments, "The expression of additional
meaning is the expression of the superimposed
meaning connected with praise or censure."
(stuti-nind‡-prayuktam adhy‡ropit‡rtha-vacanam
adhik‡rtha-vacanam). In 2.3.46
pr‡tipadik‡rthaliÔgaparim‡ıavacanam‡tre
pratham‡, the term vacana is taken by
commentators to denote number rather than to
refer to reference explicitly, i.e. the rules does
not provide as a condition for the occurrence of a
first-triplet nominal termination merely the
denotation (vacana) of measure (parim‡ıa),
gender (liÔga), and the meaning of the stem
(pr‡tipadik‡rtha)

cover symbols, and speech forms, the
A˘Ò‡dhy‡y„ incorporates certain
ontological presuppositions. The
grammar presupposes a certain structure
in the semantic field in order to operate
properly. Rules have been formulated
with certain conceptions regarding the
nature of things in mind. Numerous
passages in Pata§jali's Mah‡bh‡˘ya
analyze such presuppositions as do the
works of later philosophers of language
from BhartÁhari (5th century C.E.) to
KauıÛabhaÒÒa and N‡ge˜a (seventeenth
and eighteenth centuries). Pata§jali, for
instance, has his interlocutors asks
questions concerning the nature of action,
time, and change in the course of their
arguments about the formulation and
scope of rules. They ask:

What do you consider action to be when you
say "The term dh‡tu doesn't apply to the
roots as (class 2), bhÂ (class 1), and vid (class
4)."?
k‡ß puna˛ kriy‡ß bhav‡n
matv‡h‡stibhavatividyat„n‡ß dh‡tusaßj§‡ na
pr‡pnot„ti. (cf. vt. 5)
1.3.1 K1.258.8-9)
What do you consider time to be when you
say "The object denoted by the word with
which the word for time is compounded is
not what gets measured, so the rule doesn't
make sense."
kaß puna˛ k‡laß matv‡ bhav‡n ‡ha k‡lasya
yena sam‡sas tasy‡parim‡ıitv‡d anirde˜a iti
(vt. 1). 2.2.5 K1.409.21-22)
What do you consider change to be when you
say, "It doesn't work (the taddhita suffix
doesn't apply) in the case of bali and
Á˘abha."?
kaß punar bhav‡n vik‡raß matv‡ha
balyÁ˘abhayor na sidhyati.
5.1.13 K2.342.16)

Examination of the A˘Ò‡dhy‡y„ itself
reveals that it presupposes a certain
ontology. Substances (dravya), qualities
(guıa), and actions (kriy‡) are
distinguished as are time (k‡la), the
divisions of time past (bhÂta), present
(vartam‡na), and future (bhavi˘yat), and
the degrees of proximity in time near
(‡sanna), today (adyatana), and not today
(anadyatana). Number (saßkhy‡) is
recognized. Common properties
(s‡m‡nya) are recognized as is also
essence (bh‡va). Much of this ontology
subsequently appears as categories in the
Vai˜e˘e˘ika system of philosophy.

The various ontological categories
refered to in the A˘Ò‡dhy‡y„ serve as the

 74

conditions that characterize sets of speech
forms. Speech forms are subject to
various operations on the condition that
they do or do not denote a certain entity
in a certain ontological category. The
semantic condition is frequently placed in
the locative. For example, 5.4.11
kimettiÔavyayagh‡d ‡mv adravyaprakar˘e
provides a suffix ‡m (‡mu) to a stem
ending in a comparative and superlative
affix tara or tama on the condition that the
excellence to be denoted is not located in
a substance (dravya). Similarly, the
speech forms in the list beginning with ca
are termed nip‡ta if they do not denote a
substance (sattva).38 They are
subsequently termed indeclinable
(avyaya).39 Other ontological categories
that serve as semantic conditions in the
locative include time (k‡la),40 and
essence.41

F. Chal lenges to
un id irectional i ty

Although the A˘Ò‡dhy‡y„ does not
provide explicit rules exclusively
regarding semantics, the fact that it does
incorporate extensive organization of the
semantic field is significant. It is
particularly significant that the
organization of the semantic field is
carried out in part on the basis of
reference to syntactic and morphological
elements. Such elements are generally
introduced subsequently to and on the
basis of semantic conditions. Hence, the

38 1.4.57 c‡dayo 'sattve.
39 1.1.37 svar‡dinip‡tam avyayam.
40 2.3.64, 5.3.15.
41 3.1.107, 3.3.18, 3.3.44, 3.3.75, 3.3.95, 3.3.98,
3.3.114, 3.4.69, 4.4.144, 6.2.25. As a Buddhist,
it is natural for Jay‡ditya to avoid accepting
essence at the meaning of the word bh‡va.
Jay‡ditya understands the root bhÂ to refer to
generic action (kriy‡s‡m‡nya); hence he takes
the term bh‡va to refer to the generic action
common to the meaning of any root. In the
K‡˜ik‡ under 3.3.18 bh‡ve, he states
kriy‡s‡m‡nyav‡c„ bhavati˛ following Pata§jali's
statement kÁbhvastaya˛ kriy‡s‡m‡nyav‡cina˛
(K2.144.20, K2.47.24, etc.). Since the affixes
provided under the heading of 3.3.18 occur after
roots, which denote action, the bh‡vavacana
words refered to in 3.3.11 would denote generic
action kriy‡s‡m‡nya even if the term bh‡va did
refer to essence; the common property in all
action is the essence of action. A long tradition
of comment on the meaning of the term bh‡va
determines that it denotes non-vibratory action
(aparispandam‡na-kriy‡).

organization of the semantic field by
reference to syntactic and morphological
elements challenges the assertion that a
hierarchy of levels is unidirectional.

1. x-arthe
In the level hierarchy articulated by

Kiparsky (2002), P‡ıini employs
elements at levels two and three to
specify semantic criteria at level one.
Twenty-five of the 735 words that
specify semantic criteria employ the term
artha 'meaning' in order to specify
semantic conditions on level one on the
basis of morphosyntactic elements at
level two and morphological elements at
level three.42 In one case, an abstract
morphological element on level two is
employed to specify a semantic item on
level one that serves as a semantic
condition for another abstract
morphological element at level two. 3.4.7
liÔarthe leÒ provides that in Vedic the
abstract morphological element leÒ occurs
in the meaning of the abstract
morphological element liÔ . In this case,
the rule that assigns abstract tense
incorporates conditions only at the levels
from which and to which it maps; it
thereby accords with the general
restriction that rules incorporate
conditions only at the levels from which
and to which they map.

The remaining 25 rules containing
words ending in the term artha that
specify semantic criteria violate the
enunciated condition that rules
incorporate conditions only at the levels
from which and to which they map, as
well as at prior levels in the unidirectional
hierarchy beginning with semantics and
ending with phonology. They
incorporate conditions at level three that
specify semantic criteria at level one, two
levels prior in the unidirectional
hierarchy. Two examples suffice to
demonstrate the problem. 1.1.9 „dÂtau ca

42 saptamyarthe 1.1.19, caturthyarthe 1.3.55,
tÁt„y‡rthe 1.4.85, m‡tr‡rthe 2.1.9, anyapad‡rthe
2.1.21, c‡rthe 2.2.29, caturthyarthe 2.3.62,
liÔarthe 3.4.7, tumarthe 3.4.9, kÁty‡rthe 3.4.14,
matvarthe 4.4.128, dh‡tvarthe 5.1.118, vidh‡rthe
5.3.42, j„vik‡rthe 5.3.99, ˜aky‡rthe 6.1.81,
tadarthe 6.1.82, nity‡rthe 6.2.61, atadarthe
6.2.156, atadarthe 6.3.53, „˘adarthe 6.3.105,
aıyadarthe 6.4.60, ˜aky‡rthe 7.3.68, upam‡rthe
8.2.101, kÁtvoŸrthe 8.3.43, adhyarthe 8.3.51.

 75

saptamyarthe provides that the sounds „
and Â occurring in the meaning of the
seventh vibhakti in the Padap‡Òha are
termed pragÁhya and therefore do not
undergo sandhi. The rule thereby
specifies a semantic element, the meaning
of the seventh vibhakti, at level one on
the basis of items termed the seventh
vibhakti, namely morphological elements
i os su, at level three. The semantic
condition in turn specifies a phonological
trait, the absence of sandhi, at level four.
Similarly, 3.4.8 tumarthe sesenaseasen...
specifies several affixes that occur in the
same meaning as the infinitival affix tum.
The rule thereby employs a
morphological element -tum at level three
to characterize a set of semantic
conditions at level one, which then
conditions allomorphs -se, -sen , etc. at
level four.

The first example supports the
criticism of earlier versions of the levels
theory already articulated by Houben
(1999) that it did not permit semantic
factors to serve as conditions in
phonological rules directly. 1.1.9
provides just what was not permitted: the
semantic condition consisting of the
meaning of the seventh vibhakti inhibits
sandhi. The present version of the levels
theory accommodates this criticism by
permitting rules to incorporate factors at
any prior level in the hierarchy as
conditions. An additional problem not
previously articulated, however, plagues
the present version of the levels theory:
rules incorporate factors at subsequent
levels of the hierarchy as conditions at
prior levels.

It is not licit to dismiss the problem by
claiming that the use of the term artha
serves merely to state synonymy at levels
two and three and does not involve
mapping to prior the prior semantic level.
As Houben (1999) has been pointed out,
P‡ıini does not state rules that operate
exclusively on the semantic level. Yet, as
I have demonstrated above, P‡ıini does
incorporate organization of the semantic
level in his rules. The organization of the
semantic level is achieved in part by
reference to syntactic and morphological
criteria. Since syntactic and
morphological criteria serve to express
the structure of the semantic level,
subsequent levels of the hierarchy,

including the morphological level which
is two removed, serve as conditions for
prior levels.

2. x-vacana
In two cases, the semantic condition

that serves to characterize a set of speech
forms is specified by reference to levels
considered to be subsequent to the
semantic level in the hierarchy of four
levels proposed by Kiparsky and Staal.
In 6.2.150 ano bh‡vakarmavacana˛, the
k‡raka term karman designates a class of
items that serve as the semantic
conditions that characterize a set of
speech forms. In accordance with this
rule, a subsequent compound element
(uttarapada) that meets three conditions
has its final vowel high-toned. The three
conditions are the following: 1. it ends in
an affix of the form ana; 2. it denotes
non-vibratory action (bh‡va) or a direct
object (karman); and 3. it is preceded by a
compound element denoting a k‡raka.
The fact that a k‡raka is referred to as the
direct object of the root vac in the term
vacana is significant. It indicates that
P‡ıini considered k‡rakas to be denotable
just as purely semantic conditions are
denotable.

In 2.1.6, one of the semantic
conditions that serves to characterize a
class of indeclinables is itself
characterized by morphological criteria.
The rule provides that indeclinables that
occur in a number of senses combine
with subsequent elements to form
avyay„bh‡va compounds. The senses
specified include those denoted by
nominal terminations and other affixes
provided by rules 5.3.1-26 (vibhakti).
Hence the morphemes that constitute
vibhaktis serve to characterize the
semantic conditions under which certain
indeclinables are used. Morphological
criteria therefore serve as the grounds for
the organization of semantics which was
considered a prior level in the hierarchy
proposed by Kiparsky and Staal. Note
that the adoption of cyclicity in the
formation of the compounds in question
does not escape the problem of
counterdirectionality in the hierarchical
ordering. Regardless of whether rules
that generate compounds and their
accentuation occur subsequent to rules
that generate their compound elements,

 76

the indeclinable that constitutes the prior
element of the avyay„bh‡va compound
must have access to the morphological
level even before the question of its
entering into a compound arises.
Indeclinables are classed according to
semantic criteria that are themselves
specified by morphological units.

3. Avoidance of circularity
Although the seventh vibhakti arises

subsequently to its semantic conditions,
yet it can serve as the criterion to
characterize its semantic conditions
without resulting in circularity much in
the way circularity is avoided by evoking
the concept of a bh‡vin„ saßj§‡. The
relationship that the saptam„ vibhakti has
to its meaning, as referred to by the word
artha in the term saptamyarthe in 1.1.9 is
not a contemporaneous one. The saptam„
occurs subsequently in the hierachy of
levels. The meaning of the saptam„ are
those for which the saptam„ will
subsequently occur, just as a bh‡vin„
saßj§‡ is used for something that will
arise in a subsequent derivational stage.
Circularity is avoided because speech is
nitya. The meaning of the seventh is at a
prior level of derivation to the seventh
terminations. One would have to run
through the hierarchy to level 3 to get the
7th terminations in order to establish the
semantic range of the meaning of the 7th
at level 1. But because speech is nitya,
and its relationship to meaning is
established, the meaning of the seventh is
known even before any particular
derivational sequence is exhibited.

(To be expanded and polished.)
[1.1.45, K1.111.2 - 1.112.17]
[1.1.1 vt. 9, K1.40.18 - 1.41.4]

C. K‡rakas
As early as 1964, R. Rocher criticized

the characterization of k‡rakas as
syntactic categories, instead arguing that
they are semantic. Calling them
syntactico-semantic, Cardona (1976: 215
-224) countered that it is suitable to
consider k‡rakas as a level between the
purely semantic level and the level at
which nominal terminations are
introduced (the morphological level)
because the rules that introduce k‡raka

terms include both semantic and co-
occurrence conditions.

It is certainly the case that co-
occurrence conditions enter into k‡raka
classification rules, and therefore that the
k‡raka classification is an intermediate
stage of derivation between that of
semantic conditions and that of the
introduction of nominal terminations. It
is possible that such an intermediate stage
serves merely the purpose of procedural
economy and does not imply that k‡raka
classification constitutes a level in any
psychological or structural sense. P‡ıini
may conceive of just two levels: semantic
(artha) and phonetic (˜abda). k‡rakas are
objects intended in certain relations; the
level of intention is that of meaning, that
is, the semantic level. One prominent
seventeenth century philosopher of
language seems to favor the conception
of k‡rakas as semantic categories.
KauıÛabhaÒÒa in the "Subarthanirıaya" of
his Vaiy‡karaıabhÂ˘aıas‡ra speaks of
basic meanings for k‡rakas. He
describes the rules that do not mention
syntactic conditions as circumscribing
general semantic domains for them. Yet
the fact that P‡ıini formulated rules
categorizing certain semantic items under
certain syntactic conditions in exception
to these domains may capture the
conception, held by speakers of the
language, of such categories as natural
groups. Whether this sort of
conceptualization comprises a level
between the semantic and the
morphological, or whether all
conceptualization by virtue of being
conceptual is semantic, is a moot point
from the point of view of P‡ıinian
procedure. In P‡ıinian procedure, k‡raka
classification does occupy an intermediate
stage between purely semantic conditions
and the introduction of morphological
elements.

While procedurally k‡raka rules
intervene between semantics and
phonetics, they involve both semantics
and co-occurrence conditions themselves
and thereby include within them semantic
and phonetic parameters. From a
psychological or structural perspective,
therefore, they constitute a mixture of
levels rather then an intermediate level.

 77

D. L-affixes
In their description of levels, Kiparsky

and Staal place l-affixes at the same level
as k‡rakas. Kiparsky (2002: 3) describes
"Assignment of k‡rakas (Th-roles) and
of abstract tense" as the function of the
first set of rules mapping the semantic
level to the morphosyntactic level. The
treatment of l-affixes by P‡ıini, however,
differs markedly from the treatment of
k‡rakas. K‡rakas are terms (sa§j§‡).
Section 1.4 classifies semantic objects
intended to be expressed by a speaker in
relational categories by calling them by a
k‡raka term. Speech forms are
subsequently introduced under the
condition that an item designated by a
k‡raka term is to be denoted. L-affixes,
in contrast, are introduced under semantic
conditions, just as other affixes are, and
then are replaced by morphological
elements; they serve therefore as abstract
morphological elements themselves rather
than as morphosyntactic
representations.43 Kiparsky differentiates
abstract morphological representation
from morphosyntactic representation.
Therefore, if l-affixes belong to abstract
morphological representation and k‡rakas
to morphosyntactic representation, it is
incorrect to assert that they occupy the
same level in P‡ıinian grammar.

The concept of levels in P‡ıinian
grammar, and the hierarchy of four levels
proposed by Kiparsky and Staal, was
inspired by divisions that evolved in
modern linguistics. It is anachronistic to
read them into the A˘Ò‡dhy‡y„. Kiparsky
himself (2002: 2) hedges his attribution
of levels to P‡ıini calling them, "what we
(from a somewhat anachronistic modern
perspective) could see as different levels
of representation." P‡ıini's grammar
certainly worked with two levels:
meaning and speech. Its derivational
procedure certainly included more than
two stages. However, it appears forced
to press the derivational stages into a
conceptual hierarchy of levels between
the purely semantic and the purely
phonetic, particularly into a four-level
hierarchy corresponding to modern
linguistic divisions.

43 Cardona (1997: 496) calls them "abstract
affixes".

In describing P‡ıinian procedure, one
must be clear about when one is
superimposing conceptions from
contemporary linguistics on P‡ıini.
Likewise, in modeling P‡ıinian
procedure one must be clear about when
one is introducing contemporary
computational procedures foreign to
P‡ıini. In the next section, I describe the
organization of P‡ıinian grammar, purely
from a P‡ıinian perspective rather than
from the perspective of modern
theoretical linguistics. In the remainder
of this paper, I differentiate computational
implementations of P‡ıinian grammar
that model P‡ıinian procedure from
applications of generative computational
techniques to Sanskrit.

V. Sketch of an overview of
P‡ıinian architecture

The grammar is set up to derive
correct speech forms from an open
lexicon under certain conditions. The
usual conditions are semantic, i.e. that
certain meanings are to be denoted.
Occasionally, conditions include
pragmatics and literary context. In
general, therefore, the grammar derives
speech forms from meaning rather than
vice versa. The grammar is not organized
to determine the meaning of statements; it
proceeds from the speakers point of
view, not from the listeners point of
view. It answer the question, "How do I
say x?," not the question, "What does x
mean?"

A. Introduct ion of basic elements
on semantic condi t io ns

In general P‡ıinian grammar
introduces basic speech elements, or
morphological elements, under semantic
conditions. Basic speech elements
include roots, nominal bases and affixes.
Roots are introduced in two ways:
(1) Elements listed in the dh‡tup‡Òha

are termed roots (dh‡tu) by rule
1.3.1 bhÂv‡dayo dh‡tava˛.

(2) Derived elements terminating in
any of a series of affixes
introduced in rules 3.1.5-31 are
termed roots by rule 3.1.32.

Nominal bases are likewise introduced in
two ways:

 78

(1) Any meaningful element other than
a root (dh‡tu), affix (pratyaya), or
an element that terminates in an
affix, whether listed or not, is
termed a nominal base (pr‡tipadika)
by 1.2.45 arthavad adh‡tur
apratyaya˛ pr‡tipadikam.

(2) Derived elements, including both
those terminating in affixes termed
kÁt or taddhita and compounds
(sam‡sa), are termed nominal base
by 1.2.46 kÁttaddhitasam‡s‡˜ ca.

Affixes are introduced by rules in
adhy‡yas 3-5 governed by the heading
3.1.1 pratyay‡˛. These include affixes in
the list designated by 3.3.1 uı‡dayo
bahulam.

The basic speech elements of the
grammar do not constitute a fully
specified set of elements. First, lists are
not specified as part of the ruleset; they
are specified by commentators
subsequently, which leaves open to doubt
which items were intended to be included
by the author of the rules himself.
Second, the grammar includes recursive
procedures. The derivational procedure
permits not only the derivation of
nominal bases from roots and other
nominal bases and the derivation of
words from roots and nominal bases but
also permits the derivation of roots from
roots, roots from nominal bases, roots
from nominal words, and nominal bases
from words.

Aside from lists being in doubt and
the presence of recursive derivation of
elements, the set of basic elements is an
open set since what is classed as a
nominal base includes any meaningful
element outside of a specified set. 1.2.45
reads, "any meaningful element other
than ... is a nominal base." Moreover,
commentators call many of the lists of
nominal bases merely exemplary
(‡kÁtigaıa) rather than complete. Finally,
the fact that by 3.1.8-11 verbal roots are
derived from an unspecified set of
nominal words (pada), which are in turn
derived from the open set of nominal
bases, makes verbal roots an open set as
well.

Now, nominal bases are explicitly
stated to be meaningful, and affixes are
introduced under semantic conditions.

While no statement of the grammar
introduces underived roots under
semantic conditions and the Dh‡tup‡Òha
list did not originally include semantic
designations for them, they are assumed
to be meaningful elements from the
outset. Roots and nominal bases enter
the grammar as that after which affixes
are provided under specified conditions,
prevalently including semantic
conditions.

VI. Sandhi

VII . Inflection

VIII . Feminine affixes

IX. Derivational morphology

A. nominal stems derived from
roots

B. nominal stems derived from
nominals (words pada)
taddhitas
compounds

C. secondary roo ts derived from
roots

D. secondary roo ts derived from
nominals

X. Metalanguage
See class notes from P‡ıinian grammar
class, Filliozat's Intro.

A. Reference

1. phonetic elements, terms
1.1.68, etc.
anubandha designation 1.2.1-9
praty‡h‡ra formation 1.1.72? ‡dir antyena
sahet‡

1. Dh‡tup‡Òha
Database of roots, markers
Rules segment the dh‡tup‡Òha elements
into morphemes and markers

 79

2. GaıasÂtras

3. Morphophonemic elements
given in sÂtras
affixes
kauıÛinac

B. Rule structure
Rules of the A˘Ò‡dhy‡y„ determine the
rule structure of sÂtras:
1.1.49, 1.1.66-67 alo 'ntyasya, ‡de˛
parasya, ‡dyantau Òakitau, etc.

C. Rule ordering
paratva
nitya
antaraÔga-bahiraÔga

apav‡da
asiddhatva
see Kiparsky p. 52

XI. Why model P‡ıini?
Attempting to work out details
illuminates the understanding of P‡ıini's
method.
Understanding P‡ıini's method better
contributes to the improvement of
linguistic methodology generally.
Working out models of Sanskrit
generative grammar has direct benefits
for Indological studies: bringing
computational methods to the humanistic
disciplines and bringing Indology into the
digital humanities..

Bibliography
Bharati, Akshar, Vineet Chaitanya, and

Rajeev Sangal. 1995. Natural
Language Processing: A Paninian
Perspective. New Delhi: Prentice-Hall
of India.

Cardona, George. 1976. P‡ıini: A
Survey of Research. The Hague:
Mouton.

Chomsky, N. 1957. Syntactic Structures.
The Hague: Mouton.

Houben, Jan. 1999 [2001]. "'Meaning
statements' in Panini's grammar: on
the purpose and context of the
Astadhyayi." Studien zur Indologie
und Iranistik 22: 23-54.

K The Vy‡karaıa-mah‡bh‡˘ya of
Pata§jali. Ed. Lorenz Franz Kielhorn.
3 vols. Third edition revised and
furnished with additional readings
references and select critical notes by
K. V. Abhyankar. Pune: BORI, 1962,
1965, 1972. Reprint: 1985.

Kiparsky, Paul. 2002. "On the
Architecture of P‡ıini's Grammar."
Paul Kiparsky's Home Page.
http://www.stanford.edu/~kiparsky/

Kiparsky, Paul and J. F. Staal. 1969.
"Syntactic and semantic relations in
P‡ıini." FL 5: 83-117.

Rocher, Rosane.1964. "'Agent' et 'objet'
chez P‡ıini." JOAS 84: 44-54. p51.

Scharf, Peter. "Early Indian Grammarians
on a speaker's intention," Journal of
the American Oriental Society 115.1
(1995): 66-76.

Scharf, Peter. 2005. "P‡ıinian accounts
of the Vedic subjunctive: leÒ kÁıva°te."
Indo-Iranian Journal, 48.1: 71-96.
(Paper presented at the 214th Meeting
of the American Oriental Society, 12-
15 March 2004, San Diego,
California.) [The publication is marred
by publisher errors and omissions;
correct version:
http://www.language.brown.edu/Sans
krit/ScharfSubjunctive.pdf]

Scharf, Peter. forthcoming. "P‡ıinian
accounts of the class eight presents."
Paper presented at the 13th World
Sanskrit Conference, 10-14 July
2006, Edinburgh.

Proceedings of the First International Symposium on Sanskrit Computational Linguistics, Paris,France, October 29-31, 2007

FISSCL-88

SIMULATING THE PĀN. INIAN SYSTEM OF SANSKRIT GRAMMAR

Anand Mishra
Department of Computational Linguistics

Ruprecht Karls University, Heidelberg
http://sanskrit.sai.uni-heidelberg.de

ABSTRACT
We propose a model for the computer representation
of the Pān. inian system of sanskrit grammar. Based on
this model, we render the grammatical data and simu-
late the rules of As.t.ādhyāyı̄ on computer. We then em-
ploy these rules for generation of morpho-syntactical
components of the language. These generated compo-
nents we store in a p-subsequential automata. This we
use to develop a lexicon on Pān. inian principles. We
report briefly its implementation.

1. A REPRESENTATION OF As.t.ādhyāyı̄

The general grammatical process of As.t.ādhyāyı̄ (Ka-
tre, 1989) can be viewed as consisting of the following
three basic steps:

1. PRESCRIPTION of the fundamental components
which constitute the language.

2. CHARACTERIZATION of these fundamental com-
ponents by assigning them a number of attributes.

3. SPECIFICATION of grammatical operations based
on the fundamental components and their at-
tributes.

1.1. Fundamental Components
In his grammar Pān. ini furnishes a number of elements
(phonemes/morphemes/lexemes) which constitute the
building blocks of the language. We assign each of
them a unique key in our database. Thus the phoneme
/a/ has the key a 0, the kr. t suffix /a/ has the key a 3
and the taddhita suffix /a/ is represented by the key
a 4. Given such a collection of unique keys, we define
the set of fundamental components as follows:

Definition 1 The collection of unique keys corre-
sponding to the basic constituents of the language, we
define as the set F of fundamental components.

Further, we decompose this set F into two disjoint sets
P and M, where P is the set of keys corresponding to
the phonemes andM containing the keys of the rest of
the constituting elements (morphemes/lexemes).

P = {a 0,i 0,u 0, . . .}
M = {bhU a,tip 0,laT 0, . . .}

F = P ∪M (1)

P ∩M = φ (2)

1.2. Attributes

The fundamental units of the language are given an
identity by assigning a number of attributes to them.
The various technical terms introduced in the gram-
mar come under this category, as also the it -markers
and sigla or pratyāhāras. For example, the attributes
hrasva, gun. a and aC characterize the element a 0 as
short vowel /a/ and attributes like pratyaya, prathama
and ekavacana tell that tiP (= tip 0) is a third-person
singular suffix. Again, each attribute is assigned a
unique key in our database.

Definition 2 The collection of unique keys corre-
sponding to the terms, which characterize a fundamen-
tal component, we define as the set A of attributes.

Corresponding to the setsP andMwe can decompose
the set A into two disjoint sets Aπ and Aµ, Aπ being
the set of unique keys of the attributes to the elements

Proc. of FISSCL, Paris, October 29-31, 2007

of P and Aµ to elements of M.

Aπ = {hrasva 0,udAtta 0,it 0, . . .}
Aµ = {dhAtu 0,pratyaya 0,zit 9, . . .}

A = Aπ ∪ Aµ (3)

We note that any two of the four sets P,M,Aπ,Aµ
are mutually disjoint.

2. BASIC DATA STRUCTURES

Given the set of fundamental components (F = P ∪
M) and the set of attributes (A = Aπ ∪ Aµ), we now
define our data structure for representing the Pān. inian
process.

2.1. Sound Set ψ
Definition 3 A sound set ψ is a collection of elements
from sets P,M and A having exactly one element
from the set P .

ψ = {πp, µi, αj |πp ∈ P, µi ∈M,

αj ∈ A, i, j ≥ 0} (4)

This is an abstract data structure. Although it corre-
sponds to a phoneme or one sound unit, it represents
more than just a phoneme.

2.2. Language Component λ
Definition 4 A language component λ is an ordered
collection of at least one or more sound sets.

λ = [ψ0, ψ1, ψ2, . . . ψn] such that ‖λ‖ > 0 (5)

CONVENTION: We use square brackets [] to represent an ordered

collection and curly brackets { } for an unordered collection.

Language expressions at every level (phonemes,
morphemes, lexemes, words, sentences) can now be
represented as a language component.

Example 1: We represent the verbal root bhū as a
language component λ.

λ = [ψ1, ψ2] where

ψ1 = {bh, bhū, dhātu, . . .}
ψ2 = {u, bhū, dhātu, udātta, dı̄rgha, aC, . . .}

Corresponding to the two phonemes bh and ū in bhū,
we have an ordered collection of two sound sets ψ1

and ψ2. Consider the first one ψ1: Its first element bh
is from the phoneme set P .1 The second element bhū
tells that the phoneme of this sound set is a part of the
fundamental unit bhū. The third element stores the at-
tribute dhātu (verbal root) to this sound set. Similarly,
the second sound set ψ2 has phoneme attributes which
tell it to be an udātta (high pitched) dı̄rgha (long) aC

(vowel).
Example 2: Similarly, the language component cor-

responding to the morpheme lAT. is:

λ = [ψ] where

ψ = {l, lAT. , pratyaya, ait, t.it, . . .}

Attribute t.it says that it has t. as it - marker.
Example 3: The morphemes bhū followed by lAT.

can now be represented together by the language com-
ponent

λ = [ψ1, ψ2, ψ3] where

ψ1 = {bh, bhū, dhātu, . . .}
ψ2 = {u, bhū, dhātu, udātta, dı̄rgha, aC, . . .}
ψ3 = {l, lAT. , pratyaya, ait, t.it, . . .}

Different linguistic units can now be identified by car-
rying out intersection with the appropriate subsets of
P,M and A. For example to get the verbal root or
dhātu in λ we take the intersection of an identity set ι
= {dhātu} with each of ψi’s in λ and store the index
i when the intersection-set is not empty. In this case
we get the index list [1,2]. The list of ψi’s correspond-
ing to these indices then gives the searched morpheme.
Thus, the verbal root is given by the language compo-
nent [ψ1, ψ2].

2.3. Process Strip σ
Definition 5 A process strip σ is an ordered collection
of pairs, where the first element of the pair is the num-
ber of a particular grammatical rule (e.g. rulep) and
the second element is a language component λ.

σ = [(rulep, λp), (ruleq, λq), . . .] (6)

The rule number corresponds to the As.t.ādhyāyı̄ order
and binds the process strip with a function implement-
ing that rule in the actual program. Thus, the process

1Actually, it is the unique key bh 0 corresponding to the
phoneme bh which is stored in the sound set.

FISSCL-90

Proc. of FISSCL, Paris, October 29-31, 2007

strip simulates the Pān. inian process by storing in the
language component λp the effect of applying the rule
rulep.

3. BASIC OPERATIONS

Having defined our data-structure, we now introduce
the basic operations on them.

3.1. Attribute Addition
Let α ⊂ A ∪M and ψ be a sound set. Then attribute
addition is defined as

haψ(ψ, α) = ψ ∪ α (7)

This operation can be applied to a number of sound
sets given by indices [i, i + 1, . . . , j] in a given lan-
guage component λ

haλ(λ, α, [i, . . . , j]) = [ψ1, . . . , ψi ∪ α, . . . ,
ψj ∪ α, . . . , ψn] (8)

Example 4: Consider the language component cor-
responding to the morpheme ŚaP

λ = [ψ] where

ψ = {a, ŚaP, pratyaya, śit, pit, . . .}

RULE tiṅ śit sārvadhātukam (3.4.113) says that affixes
in the siglum tiṄ and those having ś as it marker are
assigned the attribute sārvadhātuka. We implement
this rule by checking if there are sound sets with at-
tributes pratyaya together with tiṄ or śit and adding
the attribute sārvadhātuka if the condition is fulfilled.
In this case, we get:

λ = [ψ] where

ψ = {a, ŚaP, pratyaya, śit, pit, sārvadhātuka}

3.2. Augmentation
Let

λ = [ψ1, . . . , ψi, ψi+1, . . . , ψn]
λk = [ψ1k, ψ2k, ψ3k, . . . , ψmk]

and i be an integer index such that i ≤ ‖λ‖, then aug-
mentation of λ by λk at index i is defined as

hg(λ, λk, i) = [ψ1, . . . , ψi, ψ1k, ψ2k, ψ3k, . . . ,

ψmk, ψi+1, . . . , ψn] (9)

Example 5: Consider the language component λ
corresponding to the verbal root bhū.

λ = [ψ1, ψ2] where

ψ1 = {bh, bhū, dhātu, . . .}
ψ2 = {u, bhū, dhātu, udātta, dı̄rgha, aC, . . .}

RULE vartamāne lat. (3.2.123) says that the morpheme
lAT. is added after a dhātu if the present action is to be
expressed. To implement this rule, we first look for the
indices of sound sets which have the attribute dhātu
and then append the sound set corresponding to lAT.
after the last index. We get,

λ = [ψ1, ψ2, ψ3] where

ψ1 = {bh, bhū, dhātu, . . .}
ψ2 = {u, bhū, dhātu, udātta, dı̄rgha, aC, . . .}
ψ3 = {l, lAT. , pratyaya, ait, t.it, . . .}

3.3. Substitution
We define substitution in terms of the above two oper-
ations.

Let [i, i + 1, i + 2, . . . , j] be the indices of sound
sets to be replaced in the language component λ =
[ψ1, . . . , ψi, ψi+1, . . . , ψn].

Let λk = [ψ1k, ψ2k, ψ3k, . . . , ψmk] be the replace-
ment, then the substitution is defined as

hs(λ, λk, [i, . . . , j]) =
hg(haλ(λ, {δ}, [i, . . . , j]), λk, j) (10)

where δ ∈ A is the attribute which says that this
sound set is no more active and has been replaced by
some other sound set.

Example 6: Consider the language component cor-
responding to the verbal root n. ı̄Ñ

λ = [ψ1, ψ2] where

ψ1 = {n. , n. ı̄Ñ, dhātu, ñit}
ψ2 = {i, n. ı̄Ñ, dhātu, ñit, dı̄rgha, aC}

RULE n. ah. nah. (6.1.065) says that the initial retroflex
n. of a dhātu is replaced by dental n. To implement
this rule we first search the sound sets corresponding
to dhātu, check whether the first one has a retroflex n.
and if the conditions are fulfilled, add the attribute δ in
that sound set and append the sound set corresponding

FISSCL-91

Proc. of FISSCL, Paris, October 29-31, 2007

to n after it. Further we transfer all attributes (except
the phoneme attributes) from the n. - sound set to n -
sound set for sthānivadbhāva. We get,

λ = [ψ1, ψ2, ψ3] where

ψ1 = {n. , n. ı̄Ñ, dhātu, ñit, δ}
ψ2 = {n, n. ı̄Ñ, dhātu, ñit}
ψ3 = {i, n. ı̄Ñ, dhātu, ñit, dı̄rgha, aC}

4. GRAMMATICAL PROCESS

4.1. Representing a Rule of Grammar
We represent a rule of grammar through a function
fq, which takes a process strip σp and adds a new
pair (ruleq, λq) to it where ruleq is the number of the
present rule and λq is the new modified language com-
ponent after application of one or more of the three
operations defined above on the input language com-
ponent λp.

fq(σp) = σq where

σp = [. . . , (rulep, λp)]
σq = [. . . , (rulep, λp), (ruleq, λq)]
λq = ha, hg, hs(λp, . . .)

4.2. Structure of a rule
The general structure of a rule is as follows:
—————————————————
Function fq with input strip:
σp = [. . . , (rulep, λp)]
—————————————————
check applicability conditions
if conditions not fulfilled then

return unextended σp
else
create new modified λq
return extended σq

—————————————————
Thus, given a particular state (represented by σp)

in the process of generation, the system provides for
checking the applicability of a rule fq, and if the con-
ditions are fulfilled, the rule is applied and the changed
language component together with the rule number is
stored in the modified state (represented by σq).

As the rule numbers are also stored, we can imple-
ment the rules of tripādı̄ and make their effects invis-
ible for subsequent applications. The order in which

rules are applied is provided manually through tem-
plates.

5. EXAMPLE

We take a verbal root bhū and generate the final word
bhavati meaning “he/she/it becomes”. We initialize
the process strip σ0 by loading the language com-
ponent corresponding to the verbal root and adding
a00000 as the rule number.

σ0 = [(a00000, λ0)] where

λ0 = [ψ0a, ψ0b] with

ψ0a = {bh, bhū, dhātu}
ψ0b = {u, bhū, dhātu, dı̄rgha, udātta}

RULE vartamāne lat. (3.2.123) says that the morpheme
lAT. is added after a dhātu if the present action is to
be expressed. The application now involves follow-
ing steps: Look in the last language component λ of
the process-strip σ. If there are sound sets ψ with the
identity set ι = { dhātu } in it, get their indices in index
list. This returns the index list [1,2]. If index list is non
empty then augment the language component λ0 by at-
taching the language component corresponding to the
morpheme lAT. . This is attached in this case at index 2
as the new morpheme comes after dhātu. Extend the
process strip σ0 accordingly.

fa32123(σ0) = σ1

σ1 = [(a00000, λ0), (a32123, λ1)] where

λ1 = [ψ0a, ψ0b, ψ1a] with

ψ0a = {bh, bhū, dhātu}
ψ0b = {u, bhū, dhātu, dı̄rgha, udātta}
ψ1a = {l, lAT. , pratyaya, ait, t.it}

RULE tip tas jhi sip thas tha mip vas mas ta ātām jha
thās āthām dhvam it. vahi mahiṅ (3.4.078) provides for
substitution of lAT. . We take the first suffix tiP for re-
placement. The sound sets to be replaced are deter-
mined by taking intersection with the set { lAT. , lIT. ,
lOT. , . . .} which has the morphemes having cover term
l. In this case it is at the index 3. We replace this sound
set with tiP i.e. add the attribute δ to the sound set at
index 3 and augment the language component at this
index.

fa34078(σ1) = σ2

FISSCL-92

Proc. of FISSCL, Paris, October 29-31, 2007

σ2 = [. . . , (a32123, λ1), (a34078, λ2)]
λ2 = [ψ0a, ψ0b, ψ1a, ψ2a, ψ2b]
ψ0a = {bh, bhū, dhātu}
ψ0b = {u, bhū, dhātu, dı̄rgha, udātta}
ψ1a = {l, lAT. , pratyaya, ait, t.it, δ, }
ψ2a = {t, tiP, pratyaya, sārvadhātuka, pit}
ψ2b = {i, tiP, pratyaya, sārvadhātuka, pit}

RULE kartari śap (3.1.068) says that the morpheme
ŚaP is added after dhātu but before sārvadhātuka
suffix and denotes agent. Check if sound set with
sārvadhātuka follows one with dhātu. If yes then aug-
ment the language component for ŚaP after dhātu.

fa31068(σ2) = σ3

σ3 = [. . . , (a34078, λ2), (a31068, λ3)]
λ3 = [ψ0a, ψ0b, ψ3a, ψ1a, ψ2a, ψ2b]
ψ0a = {bh, bhū, dhātu}
ψ0b = {u, bhū, dhātu, dı̄rgha, udātta}
ψ3a = {a, ŚaP, pratyaya, hrasva, śit, pit}
ψ1a = {l, lAT. , pratyaya, ait, t.it, δ}
ψ2a = {t, tiP, pratyaya, sārvadhātuka, pit}
ψ2b = {i, tiP, pratyaya, sārvadhātuka, pit}

RULE yasmāt pratyaya vidhis tad ādi pratyaye aṅgam
(1.4.013) makes the part before the suffix ŚaP an aṅga
with respect to it.

fa14013(σ3) = σ4

σ4 = [. . . , (a31068, λ3), (a14013, λ4)]
λ4 = [ψ0a, ψ0b, ψ3a, ψ1a, ψ2a, ψ2b]
ψ0a = {bh, bhū, dhātu, aṅga}
ψ0b = {u, bhū, dhātu, aṅga, dı̄rgha, udātta}
ψ3a = {a, ŚaP, pratyaya, hrasva, śit, pit}
ψ1a = {l, lAT. , pratyaya, ait, t.it, δ}
ψ2a = {t, tiP, pratyaya, sārvadhātuka, pit}
ψ2b = {i, tiP, pratyaya, sārvadhātuka, pit}

RULE sārvadhātuka ārdhadhātukayoh. (7.3.084) says
that before sārvadhātuka or ārdhadhātuka replace the

iK vowels by gun. a vowels. As ŚaP is sārvadhātuka,
we get

fa73084(σ4) = σ5

σ5 = [. . . , (a14013, λ4), (a73084, λ5)]
λ5 = [ψ0a, ψ0b, ψ5a, ψ3a, ψ1a, ψ2a, ψ2b]
ψ0a = {bh, bhū, dhātu, aṅga}
ψ0b = {u, bhū, dhātu, aṅga, dı̄rgha, udātta, δ}
ψ5a = {o, bhū, dhātu, aṅga}
ψ3a = {a, ŚaP, pratyaya, hrasva, śit, pit}
ψ1a = {l, lAT. , pratyaya, ait, t.it, δ}
ψ2a = {t, tiP, pratyaya, sārvadhātuka, pit}
ψ2b = {i, tiP, pratyaya, sārvadhātuka, pit}

RULE ec ah. ay av āy āv ah. (6.1.078) says that before
aC (vowel) e, o, ai, au are respectively replaced by ay,
av, āy, āv.

fa61078(σ5) = σ6

σ6 = [. . . , (a73084, λ5), (a61078, λ6)]
λ6 = [ψ0a, ψ0b, ψ5a, ψ6a, ψ6b, ψ3a, ψ1a, ψ2a, ψ2b]
ψ0a = {bh, bhū, dhātuaṅga}
ψ0b = {u, bhū, dhātu, aṅga, dı̄rgha, udātta, δ}
ψ5a = {o, bhū, dhātu, aṅga, δ}
ψ6a = {a, av, bhū, dhātu, aṅga, hrasva}
ψ6b = {v, av, bhū, dhātu, aṅga}
ψ3a = {a, ŚaP, pratyaya, hrasva, śit, pit}
ψ1a = {l, lAT. , pratyaya, ait, t.it, δ}
ψ2a = {t, tiP, pratyaya, sārvadhātuka, pit}
ψ2b = {i, tiP, pratyaya, sārvadhātuka, pit}

Finally we collect all ψis not having a δ, i.e. which are
not already replaced. This gives us the desired form
bhavati.

6. PASSIM (Pān. iniAN SANSKRIT
SIMULATOR)

In the following we give a brief description of PaSSim
(Pān. inian Sanskrit Simulator) we are developing at the
University of Heidelberg.2 The program aims towards
developing a lexicon on Pān. inian principles. The user

2http://sanskrit.sai.uni-heidelberg.de

FISSCL-93

Proc. of FISSCL, Paris, October 29-31, 2007

enters an inflected word or pada and the system fur-
nishes a detailed, step by step process of its generation.
It is written in PythonTM and consists of the following
modules (See Figure 1):

Figure 1: PaSSim (Pān. inian Sanskrit Simulator)

6.1. Database

This module is for inputting, updating, enhancing and
organizing the primary database of fundamental com-
ponents and attributes. The organization of database
serves the purpose of incorporating static information
of Pān. inian formulations. For example, uṄ is stored
with static attributes dhātu, bhvādi, anit. and that its
second phoneme is it - marker etc. Thus, the effect of
many definition rules of As.t.ādhyāyı̄ are stored in the
database. The database is in ASCII and each funda-
mental component or attribute has a unique key corre-
sponding to which is a hash.

6.2. Grammar

This is the main module. It contains ab-
stract classes corresponding to SoundSets,
LanguageComponents and ProcessStrips.
Further it has a number of functions like a61065(),
which simulate the individual rules of As.t.ādhyāyı̄.

6.3. Templates

This module is to organize the prakriyā. A template
prescribes the rules in order of applicability for a group
of primary verbs or nominal stems. Templates are
specified manually, taking into account the prakriyā
texts e.g. Siddhānta-Kaumudı̄ (Vasu, 1905).3 It
uses Grammar to generate the morpho-syntactic word
forms or padas.

6.4. FSA

This module is for the sake of effecient representa-
tion of generated words together with the initializ-
ing fundamental component(s) and list of rule num-
bers. These are stored as a p-subsequential transducer
(Mohri, 1996).4 The output string associated with a
word, thus provides the initializing fundamental com-
ponents and a list of rules. Grammar applies these
rules one after another and outputs the final as well as
intermediate results.

6.5. Display

This module provides HTML5 / LATEX output. It out-
puts the content according to the given style sheet for
conventions regarding script, color-scheme etc. The
phonological, morphological, syntactical and semanti-
cal information gathered during the process of genera-
tion is rendered in modern terms through a mapping of
Pān. inian attributes corresponding to it.

7. REFERENCES

Böhtlingk, Otto von. 1887. Pān. ini’s Grammatik.
Olms, Hildesheim. Primary source text for our
database.
3We would like to acknowledge two texts in Hindi —

Vyākaran. acandrodaya (Śāstrı̄, 1971) and As.t.ādhyāyı̄ sahaja-
bodha (Dı̄ks.ita, 2006) — which have been very beneficial to us.

4Sequential transducers can be extended to allow a single addi-
tional output string (subsequential transducers) or a finite number
p of output strings (p - subsequential transducers) at final states.
These allow one to deal with the ambiguities in natural language
processing (Mohri, 1996).

5See: http://sanskrit.sai.uni-heidelberg.de

FISSCL-94

Proc. of FISSCL, Paris, October 29-31, 2007

Dı̄ks.ita, Pus.pā. 2006-07. As. t.ādhyāyı̄ sahajabodha.
Vols. 1-4. Pratibha Prakashan, Delhi, India.

Katre, Sumitra M. 1989. As. t.ādhyāyı̄ of Pān. ini.
Motilal Banarsidass, Delhi, India.

Mohri, Mehryar. 1996. On some Applications of
Finite-State Automata Theory to Natural Language
Processing. Journal of Natural Language Engineer-
ing, 2:1-20.

Śāstrı̄, Cārudeva. 1971. Vyākaran. acandrodaya.
Vols. 1-5. Motilal Banarsidass, Delhi, India.

Vasu, Srisa Chandra and Vasu, Vaman Dasa. 1905.
The Siddhānta-Kaumudı̄ of Bhat.t.ojı̄ Dı̄ks. ita. Vols.
1-3. Panini Office, Bhuvanesvara Asrama, Alla-
habad, India. Primary source text for prakriyā.

FISSCL-95

Proceedings of the First International Symposium on Sanskrit Computational Linguistics, Paris,France, October 29-31, 2007

FISSCL-96

AN EFFORT TO DEVELOP A TAGGED LEXICAL RESOURCE FOR
SANSKRIT

S. Varakhedi
V.Jaddipal
V. Sheeba

Rashtriya Sanskrit Vidyapeetha Deemed University
Tirupati

{shrivara,v.jaddipal,v.sheeba}@gmail.com

1. ABSTRACT

In this paper we present our efforts the first time of
its kind in the history of Sanskrit to design and de-
velop a structured electronic lexical Resource by tag-
ging a Traditional Sanskrit dictionary. We narrate how
the whole unstructured raw text of Vaacaspatyam –
an encyclopedic type of Sanskrit Dictionary has been
tagged to form a user friendly e-lexicon with structured
and segregated information through corpus designing
methods.

2. INTRODUCTION

It is not unknown to the scholars in the field of com-
putational linguistics that electronic lexical resources
are useful not only for human understanding but
also for the needs of language processing. Many
NLP applications like Morphological Analyzer etc.
inevitably require a well-formed lexical resource.
Lexical resource with grammatical and semantic
information would be helpful in processing and in
translation and decision making inference engines as
well. It is not possible to do any kind of language
processing in syntactic and semantic level without
the structured relevant information regarding the
stems of that language. Keeping this in view we have
developed this e-resource for the Sanskrit language.

The Sanskrit language is one of the oldest classical
languages of the world. It has a gigantic literary trea-
sure related to all branches of sciences and all walks of
life. Sanskrit is the first language to have a very precise
grammar formalism authored by Paa.nini two thousand
years ago. No other language has such a great tradi-
tion of grammar formalism, which is sound, perfect
and very formal in nature. For these reasons Sanskrit
gives enormous scope for NLP researchers and com-

puter scientists from computational view point. With
out proper lexical resources, NLP researchers will find
themselves handicapped. This is the meeting point
of traditional linguists and computational researchers.
The information available in conventional lexicons are
not sufficient for computational analysis. The way
how information is stored becomes more crucial rather
than how much information is available in the lexicon.
Therefore the lexicographer of an electronic lexicon
should be careful while designing the lexicon for com-
putational processing purpose. In case of Sanskrit the
design of e-lexicon is more complex because the tra-
ditionally available lexicons or dictionaries in Sanskrit
have by nature structural complexities. They are de-
signed in an organized but not so well organized for
computational purposes. Nevertheless they become
important for they carry tremendous and immeasur-
able information. Hence restructuring of such avail-
able dictionaries in Sanskrit is the pre-eminent neces-
sity of Sanskrit computational linguistics. In this di-
rection, our team has opted Vaacaspatyam for tagging
on an experiment basis with a goal of developing a
multipurpose electronic lexical resource that could be
useful for academic research and computational pro-
cessing as well. This work opens up further a new
avenue of research in development of Sanskrit elec-
tronic dictionaries in a similar method. The experi-
ence gained through this program has prompted us to
take up V.S.Apte Sanskrit-English Dictionary in hand.

3. HARD-BOOK TO SOFT-BOOK

This encyclopedic type of lexicon was first published
in Kolkata in 1884. It is needless to say that the
re-printed editions that are available now are not at all
in readable condition due to old font types, unclear
print and missing characters. Apart from all this,

Proc. of FISSCL, Paris, October 29-31, 2007

untraced errors in the original print often mislead the
readers. It was felt necessary to have an electronic
version of this gigantic work which runs into about
11 thousand pages in six big volumes printed in old
kolkata printing halls using small fonts. There are no
breaks in words, not even clear breaks in topics and
paragraphs. For each entry tremendous information is
collected. Nevertheless, everything is undivided and
hence not easily accessible even by eminent scholars.
To avoid all this trouble, we initiated to develop an
e-content of the Vaacaspatyam, which can be searched
and retrieved with out any hustle. We started keying in
the data into machines in ISCII using gist technology
developed by CDAC Pune. Within a year we got
the first raw version of the original text that needed
several readings to get the proof corrected.

4. INTRODUCTION TO THE VAACASPATYAM

Pandit Taaranaatha Tarkavaacaspati, with his
in-depth erudition and indefatigable industriousness
devoted several years to prepare encyclopedic Sanskrit
Lexicon called ‘Vaacaspatyam’, consisting of about
5442 printed pages of A4 size. It contains terms
along with their derivations and explanations drawn
from almost all the branches of Sanskrit Litera-
ture, such as the Vedaas, Vedaa”ngaas, Puraa.naas,
Upapuraa.naas, Philosophy, Tantra, Artha”saastra,
Ala”nkaara”saastra, Chan.da”s”saastra, Sangitasastra,
Military Science, Paakavi.dyaa, “Sik.sa, Kalpa, Hasti
“Saastram, Ha.tha-Yoga and Vaastu”saastra etc. Be-
sides these, the technical words and doctrines of the
following systems of Philosophy are fully explained:
Caarvaaka, Maadhyamika, Yogaacaara, Vaibha.sika,
Soutraantika, Arhata, Raamaanuja, Maadhva,
Paa”supata, “Saiva, Pratyabhij˜na, Rase”swara,
Paa.niniiya Vyaakara.na, Nyaaya, Vai”se.sika, Mi-
imaamsa, Saa”nkhya, Pata˜njali-Yoga “Sastra and
Vedaanta.
It is needless to say that lexicon is an essential
part of language -learning. The most ancient lan-
guage of the world, Sanskrit, also has had Lexicons
such as Amarakosa, Vaijayanti, Vi”swaroopako”sa,
Naanaarthako”sa etc., which serve more like The-
saurus than dictionary. However, dictionaries such
as “Sabdakalpadruma of Raadhaakaantadeva were
compiled, where in the grammatical requirements

of the Sanskrit reader were also met with. The
Vaacaspatyam as a lexicon of Sanskrit words with
word-derivation, grammatical specification as per the
Paa.ninian System is an excellent work for reference
concerning the Sanskrit system of word-meaning. The
uniqueness of this lexicon, in comparison to even
its succeeding lexicons such as Apte's dictionary,
is that while most dictionaries concentrate on the
semantic aspect of words listed, the Vaacaspatyam
not only deals with their grammatical aspects but also
gives all the details available in Sanskrit literature.
Though the Vaacaspatyam is constructed in the style
of “Sabdakalpadruma, it excels “Sabdakalpadruma in
references and size.

This Sanskrit lexicon which is encyclopedic in
nature is a pioneering work of its kind and ever since
its publication has been held in the highest esteem not
only in India but even in England and Europe, because
it is by far, wider and deeper in scope than any other
contemporary Sanskrit dictionary.

The author of the work Pandit Taaraanatha
Tarkavaacaspati himself states that in addition to all the
derivations and different meanings with illustrations of
all the words which are found in Wilson's Sanskrit Dic-
tionary and Raja Raadhaakanta's “Sabdakalpadruma,
Vaacaspatyam contains numerous Vedic words which
are not found even in the Bohtlink's St. Petersburg
Sanskrit - German dictionary.

5. CONTENTS AND FEATURES OF
VACHASPATYAM

1. Listing of words in alphabetical order.
2. Paa.nini’s li”ngaanu”saasana on genders.
3. Panini’s rules on the suffixes.
4. Paa.nini’s rules on the primitive and derivative

words.
5. The derivation and different meanings with il-

lustrations of all the words which are found in the Wil-
son's Sanskrit dictionary and Raadhaakaanta's “Sab-
dakalpadruma and numerous words not to be found in
the said or any previous dictionaries.

6. The derivations and different meanings of the
words of the Vedas.

7. Numerous Vedic words not to be
found in Bohtlink's Sanskrit and German dictio-

FISSCL-98

Proc. of FISSCL, Paris, October 29-31, 2007

nary.Technical words and doctrines of the following
system of Philosophy are fully explained - Caarvaaka,
Maadhyamika, Yogacara, Vaibha.sika , Soutraan-
tika, Aarhata, Raamaanuja, Maadhva, Paa”supata,
“Saiva, Pratyabhij˜na, Rase”swara, Paa.nini, Nyaaya,
Vai”se”sika, Miimaamsa, Saankhya, Paatanjala-Yoga
and Vedaanta.

8. The technical terms of the “Srouta and G.rhya
sutras.

9. The technical words of Sm.ritis.
10. The plan and scope of all the Puraa.naas and

Upapuraa.naas.
11. Plan and scope, of the Mahaabhaarata and

Raamaaya.na.
12. The History of the ancient Kings of India as

far as gathered from the Puraa.naas and Upapuraa.nas.

13. The position of the different coun-
tries/dwiipaas according to ancient Indian Texts.
(Brahmaan.davar.nanam)

14. The full explanation of technical terms of
Ayurveda and also an account of Ancient Indian Sci-
ence of Anatomy and the preparation of the medicines
according to Ayurvedic texts.

6. DEVELOPMENT OF E-VAACASPATYAM

The Vaacaspatyam contains about 46970 unique word
entries with explanation. Each entry has a minimum
of 2 lines of information and in most of the cases it
runs about 10 to 20 lines. Some prominent words may
have elaborate entries upto 20 pages on their category,
meaning, sources, usages and other related informa-
tion. More than 200 source books of different branches
and disciplines of learning and are cited. References of
more than 30 ko”shaas (lexicons) are found. Names of
these references and sources that were cited in short
abbreviations are expanded to their full form for the
benefit of the readers. The tags help in segregating
such flowing information.

7. TAGGING SCHEME FOR
E-VAACASPATYAM

As soon as the basic electronic text was ready for ap-
plication, we started to tag the text with meta-tags to
identify the structures of the lexicon. The following
tagset was developed for marking.

Tag Description Example

1. <cat> Category of the word a <cat> avyaya
</cat>

2. <vp> Vyutpatti i.e., etymology aja <vp> na jaay-
ate </vp>

3. <pr> PrayogaH – usage in any standard Sanskrit
work

4. <vkr> Vyakarana information aja<vkr>
na+janii+da </vkr>

5. <ar> Artha i.e., meaning aja <ar> caturmuKa
</ar>

6. <vg> Vigraha i.e, explanation given for com-
pound word

7. <akr> Aakara i.e., source for the word or its ety-
mology, usage etc.

8 <vn> Vivara.nam i.e., narration about the particu-
lar concept

This tag set is used to segregate the semantic part
of the text. For stylistic presentation, we have used
some other tags (<sl> to indicate “Sloka etc.) which
are not listed here. Initially the tagging was done
manually with help of some scholars. Later, we could
find out some heuristics using which 70% of the text
was mechanically tagged. Through this method we
saved human labor as well as money.

The raw text added with these meta-tags, which con-
tain necessary information about linguistic features,
has become a good resource not only for presentation
but also for better understanding of the original text
and the semantics of the words listed in the lexicon.

This Tagging scheme has given tree structure to the
lexicon in the following way.

A) Simple structure 1
<word> %stem%
<category> INFO </category>
<grammar> INFO </grammar>
<meaning1> INFO </meaning1>
<usage1> INFO </usage1>
<ref1> INFO </ref1>
<meaning2> INFO </meaning2>
</word>
B) Structure 2
<word> %stem%
<grammar> INFO </grammar>
<category1> INFO </category1>
<meaning1> INFO </meaning1>
<usage1> INFO </usage1>

FISSCL-99

Proc. of FISSCL, Paris, October 29-31, 2007

<ref1> INFO </ref1>. . . .
<usage2> INFO </usage2>
<meaning2> INFO </meaning2>
<category2> INFO </catgory2>
<meaning1> INFO </meaning1>
<usage1> INFO </usage1>
<ref1> INFO </ref1> . . .
<usage2> INFO </usage2>
<meaning2> INFO </meaning2>
</word>
C) Structure 3
<word> %stem%
<category> INFO </category>
<grammar1> INFO </grammar1>
<meaning1> INFO </meaning1>
<usage1> INFO </usage1>
<ref1> INFO </ref1>. . . .
<usage2> INFO </usage2>
<meaning2> INFO </meaning2>
<grammar2> INFO </grammar2>
<meaning1> INFO </meaning1>
<usage1> INFO </usage1>
<ref1> INFO </ref1> . . .
<usage2> INFO </usage2>
<meaning2> INFO </meaning2>
</word>
Thus the lexicon that was readable only by an intel-

ligent scholar, is made very simple in structure in order
to be understood by a novice in Sanskrit. This struc-
ture enabled us to develop a searchable e-dictionary
with different kinds of searchable options.

8. COMPLEXITIES IN TAGGING

Since the source text was very much unstructured from
computational aspects though it was humanly under-
standable, it was not so easy to tag the information in
order to get a tree structure. There was no standard and
common sequence of information for all entries. The
following are some examples of the complexity of the
text.

<word>
<cat>INF</cat>
<m1>,<m2>. . . <mn>
<ref1><ref2>. . . .<refn>
<ex1><ex2>.<exn>
</word>

However it sometimes goes as follows
<word>
<cat>INF</cat> <gr>INF</gr>
<m1>INF<ref1>INF</ref1><m1>
<m2>INF<ref2>INF</ref2><gr>INF<gr><eg>INF</eg><m2>
<m3>. <mn>
</word>
Further in some places the text has following struc-

ture
<word>
<cat>INF</cat> <gr><m1>
<m2><gr><m3><m4><ref2><ref3>
“source”<m4><gr>. . .
</word>
Even in grammar information there is no common

way for representing the same. For example
<word>
<gr>”root” – “meaning of root” “suffix”</gr>
INF
</word>
<word>
<gr>”root” – “meaning of root” “suffix” “meaning

of suffix”</gr>
INF
</word>
<word>
<gr>”root” – “meaning of suffix” “suffix”</gr>
INF
</word>

9. E-VAACASPATYAM ON CD ROM

The first version of Vaacapspatyam CD ROM is ready
for public release with 6 kinds of search facilities.
All 42,000+ word entries are indexed alphabetically.
By selecting any word in the word-index, one can
access information related to the selected word. In the
second option, the user can enter any string he wants
to search, by clicking on soft key board designed
for Sanskrit alphabets. If the string is available in
key word list, Machine calls for relevant information
about the string entered by the user. The third search
option helps the user in searching all related words
to a particular concept like wordnet. This option is
unique as it helps the user in getting all the related
words while composing poems etc. The Fourth search
option is yet another unique experiment for Sanskrit
Manuscript editors. In this option two entry boxes

FISSCL-100

Proc. of FISSCL, Paris, October 29-31, 2007

are given, where the user can specify the starting and
ending letters of the word missing in the manuscripts.
The machine brings all the possible words that begin
and end with the specified letters. This option is
found very much useful for the editors, while reading
damaged manuscript with missing letters and words.1

Another search option is also given for the user to
search for usages and expressions taken from various
texts for a particular string or word. One can even
search for all words derived from a root or a word
with any particular suffix. In addition to all these,
word-game enriches the CD with an added value.

We hope that users of this CD-ROM will find it
useful for their research and other applications. We
also hope that this becomes a model for tagging of any
Sanskrit or other Indian language lexicons.

10. TECHNICAL INFORMATION

The CD-R presentation is developed using Visual
Basic. The system tools that are available in VB
are used. To avoid problems in font display, the
textual output is shown in Netscape browser (Ver-
sion 4.5) using DV-TT-yogesh font developed for
iscii text. This method is a tested one and works
in all platforms from windows-98 to windows-XP
and gets rid of broken font display problem while
presenting the text through the browser. At the
development stage Perl was extensively used for tag-
ging manually annotated text and for removing errors.

11. FURTHER SCOPE FOR RESEARCH

It is needless to establish that such a work of devel-
oping e-lexicon added with information meta-tags is
of high importance in language processing. However,
the traditional Sanskrit lexicons are rich in content
and poor in organization from computational aspects.
They need to be restructured for computational pur-
poses. This work poses several challenges for lexico-
graphic science in computational linguistics. There are
dozens of such complicated dictionaries like. “Sab-
dakalpadruma and V.S.Apte dictionary for Sanskrit-
English vise-versa. Our team has started working on

1 See Appendix – II for Search option images in CD-ROM.

these both dictionaries. We hope we will come with
good results very soon.

12. ACKNOWLEDGEMENT

The authers are thankful to the Vice Chancel-
lor, RSVidyapeetha,Tirupati, K.V. Ramakrishna-
macharyulu, Amba P.Kulkarni, Deeptha, Anilkumar,
Administrative Heads of Vidyapeetha and Referees of
the paper.

13. REFERENCES

1. Taranatha Tarka Vachaspati, Vachaspatyam,
(Reprint) Rashtriya Sanskrit Sansthan, New
Dehli, 2000.

2. Descartes and Bunce, Programing the Perl DBI,
O’Reilly 2000.

3. Erik T. Ray & Jason McIntosh, XML and perl,
O’reilly 2002.

4. Jeffrey E.F. Friedl ,Mastering Regular Expres-
sions, O’Reilly 2002.

14. APPENDIX

Figure 1: Home page of Vacaspatyam

FISSCL-101

Proc. of FISSCL, Paris, October 29-31, 2007

Figure 2: Alphabetical-index

Figure 3: Word-Index

Figure 4: Editor’s help

Figure 5: Grammatical Specialities-1

Figure 6: Grammatical Specialities-2

Figure 7: Grammatical Specialities-3

FISSCL-102

Critical Edition of Sanskrit Texts

Marc Csernel
INRIA, Projet AXIS,

Domaine de Voluceau,
Rocquencourt BP 105

78153 Le Chesnay Cedex, France
Marc.Csernel@inria.fr

François Patte
UFR de Mathématiques et Informatique,

Université Paris Descartes,
45 rue des Saints-Pères,

75270 Paris cedex 06, France
Francois.Patte@math-info.univ-paris5.fr.

ABSTRACT
A critical edition takes into account all the different known versions of the same text in order to show the differ-
ences between any two distinct versions. The construction of a critical edition is a long and, sometimes, tedious
work. Some software that help the philologist in such a task have been available for a long time for the European
languages. However, such software does not exist yet for the Sanskrit language because of its complex graphical
characteristics that imply computationally expensive solutions to problems occurring in text comparisons.

This paper describes the Sanskrit characteristics that make text comparisons different from other languages,
presents computationally feasible solutions for the elaboration of the computer assisted critical edition of Sanskrit
texts, and provides, as a byproduct, a distance between two versions of the edited text. Such a distance can then be
used to produce different kinds of classifications between the texts.

1. INTRODUCTION

A critical edition is an edition that takes into account all the different known versions of the same text. If the text is
mainly known through a great number of manuscripts that include non trivial differences, the critical edition often
looks rather daunting for readers unfamiliar with the subject.

• If the number of texts to compare is small and differences between texts are not too great, the text looks just
like any commentated editions.

• If the text is mainly known through a great number of manuscripts that include non trivial differences, the
critical edition looks often rather daunting for readers unfamiliar with the subject. The edition is then formed
mainly by footnotes that enlighten the differences between manuscripts, while the main text (that of the
edition) is rather short, sometimes a few lines on a page.

Note that in either case, the main text is established by the editor through his own knowledge. More explicitly,
the main text can be either a particular manuscript, or a “main” text, built according to some specific criteria chosen
by the editor.

Building a critical edition by comparing texts two by two, especially manuscript ones, is a task which is certainly
long and, sometimes, tedious. This is why, for a long time, computer programs have been helping philologists
in their work (see O’Hara (1993) or Monroy & al. (2002) for example), but most of them are dedicated to texts
written in Latin (sometimes Greek) scripts. For example, the Institute for New Testament Textual Research (2006),
at Münster University, provides an interactive critical edition of the Gospels.

In this paper we focus on the critical edition of manuscripts written in Sanskrit.
Our approach will be based on and illustrated by paragraphs and sentences that are extracted from a collection of

manuscripts of the “Banaras gloss”, kāśikāvr. tti in Sanskrit (Kāśi is the name of Banaras). The Banaras gloss was

This paper was supported by the ACI CNRS “histoire des savoirs” and the Asia IT & C contract 2004/091-775.
Critical editions of the Gospels have induced a considerable amount of studies.

Proc. of FISSCL, Paris, October 29-31, 2007

written around the 7th century A.D., and is the most widespread, the most famous, and one of the most pedagogical
commentary on the notorious Pān. ini grammar.

Pān. ini’s grammar is known as the first generative grammar and was written around the fifth century B.C. as
a set of rules. These rules cannot be understood without the explanation provided by a commentary such as the
kāśikāvr. tti. Notice that, since some manuscripts have been damaged by mildew, insects, rodents. . . , they are not
all complete. In particular, they do not include all chapters; generally around fifty different texts are available for
comparison at the same time.

In what follows we will first describe the characteristics of Sanskrit that matter for text comparison algorithms
as well as for their classification. We will also present briefly the textual features we use to identify and to quantify
the differences between manuscripts of the same Sanskrit text. We will show that such a comparison requires to
use a lemmatized text as the main text.

Roughly speaking, lemmatization is a morpho-linguistic process which makes each word appear in its base
form, generally followed by a suffix indicating its inflected form. For example walking, consists of the base form
walk, followed by the suffix ing which indicates the continuous form. After a lemmatization each word will, at
least, appear as separated from the others.

The revealed differences, which as a whole, form one of the most important parts of the critical edition, provide
all the information required to build distances between the manuscripts. Consequently we will build phylogenetic
trees assessing filiations between them, or any kind of classification regrouping the manuscripts into meaningful
clusters. Finally, we will discuss the definition of a method of computation of faithful distances between any two
Sanskrit texts, provided one of them is lemmatized.

2. HOW TO COMPARE SANSKRIT MANUSCRIPTS

2.1. Sanskrit and its graphical characteristics

One of the main characteristic of Sanskrit is that it is not linked to a specific script. A long time ago Sanskrit
was mostly written with the Brāhmı̄ script, but nowadays Devanāgarı̄ is the most common one. Other scripts may
be used, such as Bengali, in northern India, or Telugu, in southern India. In Europe, an equivalent (but fictive)
situation would be to use either the Latin, Cyrillic, or Greek alphabets to write Latin. Sanskrit is written mostly
with the Devanāgarı̄ script that has a 48 letter alphabet.

Due to the long English presence in India, a tradition of writing Sanskrit with the Latin alphabet (a transliter-
ation) has been established for a long time by many European scholars such as Franz Bopp (1816). The modern
IAST — International Alphabet of Sanskrit Transliteration — follows the work of Monier-Williams in his 1899
dictionary. All these transliteration schemes were originally carried out to be used with traditional printing. It was
adapted for computers by Frans Velthuis (1991), more specifically to be used with TEX. According to the Velthuis
transliteration scheme, each Sanskrit letter is written using one, two or three Latin characters; notice that according
to most transliteration schemes, upper case and lower case Roman characters have a very different meaning. In
this paper, unless otherwise specified, a letter is a Sankrit letter represented, according to the Velthuis scheme, by
one, two or three Latin characters.

In ancient manuscripts, Sanskrit is written without spaces, and from our point of view, this is an important
graphical specificity, because it increases greatly the complexity of text comparison algorithms. One may remark
that Sanskrit is not the only language where spaces are missing in the text: Roman epigraphy and European Middle
Age manuscripts are also good examples of that.

2.2. The different comparison methods

Comparing manuscripts, whatever the language, can be achieved in two ways:

• When building a critical edition, the notion of word is central, and an absolute precision is required. For
example, the critical edition must indicate that the word gurave is replaced by the word gan. eśāya in some

FISSCL-104

Proc. of FISSCL, Paris, October 29-31, 2007

manuscripts, and that the word śrı̄ is omitted in others.

• When establishing some filiation relations between the manuscripts, or for a classification purpose, the notion
of word can be either ignored, or taken into account. The only required information is the one needed to build
a distance between texts. Texts can be considered either as letter sequences, or as word sequences.

Considering each text as a letter sequence, Le Pouliquen (2007) proposed an approach that determines the so
called “Stemma codicum” (nowadays filiation trees) of a set of Sanskrit manuscripts. The first step consists in the
construction of a distance according to the Gale and Church (1993) algorithm. This algorithm was first developed
to provide sentence alignments in a multi-lingual corpus, for example a text in German and its English translation.
It uses a statistical method based on sentence length. Gale and Church showed that the correlation between two
sentence lengths follows a normal distribution. Once the distance is computed, a phylogenetic tree is built using
the N-J —Neighbour-Joining— algorithm (Saitou and Nei (1987)).

On the other hand, each critical edition deals with the notion of word. Since electronic Sanskrit lexicons such
as the one built by Huet (2004, 2006) do not cope with grammatical texts, we must find a way to identify each
Sanskrit word within a character string, without the help of either a lexicon or of spaces to separate the words.

2.3. How shall we proceed?
The solution comes from the lemmatization of one of the two texts: the text of the edition. The lemmatized text
is prepared by hand by the editor. We call it a padapāt.ha, according to a mode of recitation where syllables are
separated.

From this lemmatized text, we will build the text of the edition, that we call a sam. hitapāt.ha, according to a
mode of recitation where the text is said continuously. The transformation of the padapāt.ha into the sam. hitapāt.ha
is not straightforward because of the existence of sandhi rules.

What is called sandhi — from the Sanskrit: liaison — is a set of phonetic rules which apply to the morpheme
junctions inside a word or to the junction of words in a sentence. Though these rules are perfectly codified in
Pān. ini’s grammar, they could become quite tricky from a computer point of view. For instance, the final syllable
as is mostly changed into o if the next word begins with a voiced letter, but the word tapas (penance) becomes
tapo when it is followed by the word dhana (wealth) to build the compound tapodhana (one who is rich by his
penances), while it remains tapas when composed with the suffix vin: tapasvin (an ascetic). What is a rule for
Pān. ini, becomes an exception for computer programs and we have to take this fact into account.

A text with separators (such as spaces) between words, can look rather different (the letter string can change
greatly) from a text where no separator are found.

We call the typed the text, corresponding to each manuscript, a mātr. kāpāt.ha. Each mātr. kāpāt.ha contains the
text of a manuscript and some annotation commands.

\gap Gap left intentionally by a
scribe

\deleted Text deleted by the scribe

\afterc The text after a scribe’s cor-
rection.

\beforec The text before a scribe’s
correction

\scribeadd Insertion made by the
scribe without the presence
of gap

\eyeskip The scribe copying the text
has skipped his eyes from
one word to the same word
later in the text.

\doubt Text is not easily readable \inferred Text very difficult to read
\lacuna The text is damaged and

not readable
\illegible Mainly concerns the dele-

ted text

FISSCL-105

Proc. of FISSCL, Paris, October 29-31, 2007

\insertioningap Insertion made by a scribe
in a gap

\foliochange

\ignoredtext This text of the manuscript,
is not part of the opus

\marginote Insertion made by the scri-
be, as his own commentary
(but not part of the text)

\notes Notes made by the scholar
in charge of the collation

Table 1: The collation commands.

These commands allow some information from the manuscript to be taken into account, but this information is
not part of the text, such as ink colour, destruction, etc. They provide a kind of meta-information.

The typing of each mātr. kāpāt.ha is done by scholars working in pair, one reading, one typing (alternatively). To
avoid the typing of a complete text, they copy and modify the text of the sam. hitapāt.ha according to the manuscript.

• First step: A twofold lexical preprocessing. First the padapāt.ha is transformed into a virtual sam. hitapāt.ha
in order to make a comparison with a mātr. kāpāt.ha feasible.

The transformation consists in removing all the separations between the words and then in applying the
sandhi. This virtual sam. hitapāt.ha will form the text of the edition, and will be compared to the mātr. kāpāt.ha.
As a sub product of this lexical treatment, the places where the separation between words occurs will be kept
into a table which will be used in further treatments (see: 4.4).

On the other hand, the mātr. kāpāt.ha is also processed, the treatment consists mainly in keeping the collation
commands out of the texts to be compared. The list of the commands can be found in Table 1 (p. 106) with
some explanation when needed. Notice that for practical reasons, these commands cannot, for the time being,
be nested. Out of all these commands just a few have an incidence on the texts to be compared.

• Second step: An alignment of a mātr. kāpāt.ha and the virtual sam. hitapāt.ha (an alignment is an explicit one to
one correspondence of the letters of the two texts.) A more precise definition can be found on page 111. The
Longest Common Subsequence algorithm is applied to these two texts. The aim is to identify, as precisely as
possible, the words in the mātr. kāpāt.ha, using the padapāt.ha as a pattern. Once the words of the mātr. kāpāt.ha
have been determined, we can see those which have been added, modified or suppressed.

The comparison is done paragraph by paragraph, the different paragraphs being constructed in each mātr. kāpāt.ha
by the scholar who collated them, according to the paragraph made in the padapāt.ha during its elaboration. In a
first stage, the comparison is performed on the basis of a Longest Common Subsequence. Each of the obtained
alignments, together with the lemmatized text (i.e. the padapāt.ha), suggests an identification of the words of the
mātr. kāpāt.ha. However, due to the specificities of Sanskrit, the answer is not straightforward, and a consistent
amount of the original part of this work concerns this identification process. Surprisingly the different rules used
for this determination are not based on any Sanskrit knowledge, but on common sense. The result of the application
of these rules has been validated by Sanskrit philologists.

We remark that the kind of results expected for the construction of a critical edition (what words have been
added, suppressed or replaced in the manuscript) is similar to the formulation of an edit distance, but in terms
of words. The results we obtain from the construction of the critical edition can be transformed into a distance
between the manuscripts.

3. THE LEXICAL PREPROCESSING

The goal of this step is to transform both the padapāt.ha and the mātr. kāpāt.ha in order to make them comparable.
This treatment will mainly consist in transforming the padapāt.ha into a sam. hitapāt.ha. The mātr. ikāpāt.ha will be

FISSCL-106

Proc. of FISSCL, Paris, October 29-31, 2007

purged of all collation commands, except some of the commands which modify the text to be compared, namely
\scribeadd, \afterc, \inferred. All lexical treatments are build using Flex, a Linux version of Lex
which is a free and widely known software.

At the end of the lexical treatment the text corresponding respectively to the padapāt.ha and the mātr. kāpāt.ha is
transmitted to the comparison module with an internal encoding (see Table 4, p. 109). This allows us to ensure the
comparison whatever the text encoding — unicode instead of Velthuis code for instance — the only condition is
to build a new lexical scheme, which is a perfectly delimited work albeit a bit time-consuming.
An example of padapāt.ha:
iti+anena krame.na var.naan+upaˆdi"sya+ante .na_kaaram+itam+|

we can see that words are separated by spaces and three different lemmatization signs: +, , ˆ which have the
following meanings:

• +: Indicates a separation between inflected items in a sentence.

• : Indicates a separation between non inflected items of a compound word.

•ˆ: Indicates the presence of a prefix; this sign is not, for the moment, taken into account for the comparison
process. It will be used for a future automatic index construction.

3.1. The lexical preprocessing of the mātr. kāpāt.ha
The main goal of this step is to remove the collation commands in order to keep only the text of the manuscript
for a comparison with the sam. hitapāt.ha. The list of these commands can be found in Table 1 (p. 106). The
tables described hereafter follow more or less the Lex syntax, with a major exception, for readability reason: the
suppression of the protection character denoted “ \”. We will note briefly some of the main features:

The character “|” means or; a name included within braces, such as {VOWEL}, is the name of a letter subset
defined in Table 2 (p. 107). It can be replaced by any letters of the subset. The character “/ ” means followed by,
but the following element will not be considered as part of the expression: it will stay within the elements to be
further examined; examples of the use of the character “/ ” will be found hereafter in Table 3 (p. 108).

Note that some possible typographical errors induced us to remove all the spaces from the mātr. kāpāt.ha before
the comparison process. Thus no words of the mātr. kāpāt.ha can appear separately during that process.

SOUR k|kh|c|ch|.t|.th|t|th|p|ph|"s|.s|s|.h
NAS n|.n|"n|˜n|m|.m

VOWEL A aa|i|ii|u|uu|.r|.R|.l|.L|e|ai|o|au
VOWEL a|{VOWEL_A}
DIPH e|ai|o|au
CONS k|kh|g|gh|"n|c|ch|j|jh|˜n|.t|.th|.d|.dh|

.n|t|th|d|dh|n|p|ph|b|bh|m|"s|.s|s
SON g|gh|j|jh|.d|.dh|d|dh|b|bh|l|r|y|v|{NAS}|.m|h
GUTT k|kh|g|gh|"n
PALA c|ch|j|jh|˜n
LEMM +|_|ˆ

DENTA t|th|d|dhn
LABIA p|ph|b|bh|m

Table 2: Some lexical definition of letter categories.

Table 2 provides a definition for the subset definition such as VOWEL A defined in the third line, which

FISSCL-107

Proc. of FISSCL, Paris, October 29-31, 2007

is a subset of the alphabet containing all the vowels except a, in fact one of the following letters:
aa, i, ii, u, uu, .r, .R, .l, .L, e, ai, o, au

according to the Velthuis encoding scheme, and VOWEL, next line, defined by any letter in: a|{VOWEL A} can be
any letter in VOWEL A or a. Notice that the subset LEMM contains the different lemmatization signs found in the
padapāt.ha.

Table 3 (p. 108) contains some example of generative sandhi where a new letter (or a sequence of letters) is
inserted within the text. Table 5 (p. 109) contains some examples of ordinary sandhi where a set of letters is
replaced by one or two other letters.

The contents of both preceding tables will be explained in the following section.

3.2. The lexical preprocessing of the padapāt.ha
The main goal of this step is to apply the sandhi rules in order to transform the padapāt.ha into a sam. hitapāt.ha,
the other goal is to purge the padapāt.ha of all unwanted characters. The sandhi (p. 105) are perfectly determined
by the grammar of Sanskrit (see for example (Renou (1996)). They induce a special kind of difficulties due to the
fact that their construction can be, in certain cases, a two-step process. During the first step, a sandhi induces the
introduction of a new letter (or a letter sequence). This new letter can induce, in the second step, the construction of
another sandhi. The details of the lexical transformation expressed as a Flex expression can be found in Table 3
(p. 108) for the first step, and in Table 5 (p. 109) for the second one.

as+/{SON} Add("o"); AddSpace();
as+/{VOWEL A} Add("a"); AddSpace();

as+a Add("o.a");
aas+/{VOWEL} Add("aa"); AddSpace();

as+/(k|p|s|.s|"s) Add("a.h"); AddSpace();
ai/+{VOWEL} Add("aa"); AddSpace();

ai(|ˆ)/{VOWEL} Add("aay");
Table 3: Some of the generative sandhi.

Table 3 can be read in the following way: the left part of the table contains a Flex expression, the right part
some procedure calls. The two procedures are Add("xxx"), which adds the letter sequence xxx to the text of
the padapāt.ha, and AddSpace() which adds a space within the text. When the expression described in the left
part is found within the padapāt.ha, the procedures described in the right part are executed. The letters belonging
to the expression on the left of the sign “/ ” are removed from the text. The different expressions of the left part are
checked according to their appearence. The tests are done in sequential arrangement.

For example the first three lines of Table 3 state that:

• If a sequence as, followed by a lemmatization sign +, is followed by any letter of the {SON} subset defined
in Table 2, the program puts in the text an o followed by a space; the letter sequence as+ will be dropped out
from the text, but not the element of {SON}.

Example: If the sequence bahavas+raa"sayas+hataas+| is found in the padapāt.ha, the sequence
as+/{SON}: bahavas+r and raa"sayas+h is found twice.
Therefore, according to the rules defined in the right column of the table, we get as a result in the sam. hita-
pāt.ha: bahavo raa"sayo hataah.|, corresponding to the Sanskrit text: bahavo rāśayo hatāh. |

• If the sequence as+ is followed by a letter which belongs to {VOWEL A}, an a will be generated and the
element belonging to {VOWEL A} will remain.

The case hataas+| is not one of these for two reasons: 1) aas+ is different from as+, according to the Velthuis encoding scheme,
2) | is a punctuation mark and does not belong to the category {SON}, it has its own way of treatment.

FISSCL-108

Proc. of FISSCL, Paris, October 29-31, 2007

Example: If the sequence prakalpitas+i.s.taraa"sis+| is found in the padapāt.ha, we have
one sequence as+/{VOWEL A}: prakalpitas+i and, in this case, the program will return within the
sam. hitapāt.ha: prakalpita i.s.taraa"si.h|. The Sanskrit text: prakalpita is. t.arāśih. |

• If the sequence as is followed by a lemmatization sign + and by the letter a, it will be replaced by the
sequence o.a and no space will be added.

Example: If the sequence yogas+antare.nonayutas+ardhitas+| is found in the padapāt.ha, the
sequence appears twice: yogas+a and yutas+a; this will be changed into:
yogo.antare.nonayuto.ardhita.h|, corresponding to the Sanskrit text: yogo’ntaren. ona-
yuto’rdhitah. |

Once Table 3 has been used with the padapāt.ha, Table 5 and Table 4 are used in the same lexical pass.
Table 4 is really simple: the left part contains a character sequence corresponding to the Velthuis code, the right

part contains a return code followed by an upper case letter sequence beginning by an L. This letter sequence is
the name of an internal code that corresponds to a devanāgarı̄ letter and will be used for further treatment.

e return LE;
ai return LAI;
aa return LABAR;
au return LAU;
k return LK;
"n return LNQU;
˜n return LNTI;
.n return LNPO;

Table 4: Examples of Velthuis characters encoding, with linked internal code

Table 5 is a little bit more complicated in its right part. It contains references to two variables Alter and Next
and each of these variables is affected by a value of the internal code corresponding to the Velthuis code.

.m/{GUTT} Alter = LNQU; return LMPO;

.m/{PALA} Alter = LNTI; return LMPO;

.m/{DENTA} Alter = LN; return LMPO;

.m/{LABIA} Alter = LM; return LMPO;
(a|aa){LEMM}(a|aa) return LABAR;
(a|aa){LEMM}(o|au) return LAU;
.r/{LEMM}({VOWEL}|{DIPH}) return LR;
e{LEMM}a Next = LAVA; return LE;
o{LEMM}a Next = LAVA; return LO;
(k|g)/{LEMM}{SOUR} return LK;
(k|g|c)/{LEMM}({SON1}|{VOWEL}) return LG;
(k|g|c)/{LEMM}{NAS} Alter = LNPO; return LG;
(.t|.d|.s)/{LEMM}{SOUR} return LTPO;
(.t|.d|.s)/{LEMM}{NAS} Alter = LNPO; return LDPO;
(.t|.d|.s)/{LEMM}({SON}|{VOWEL}) return LDPO;
as/+" " Next = LHPO; return LA;

Table 5: Some normal sandhi

FISSCL-109

Proc. of FISSCL, Paris, October 29-31, 2007

The variable Alter corresponds to an alternate value to the returned code (in other terms, the code of another
possible letter), the variable Next corresponds to the code letter generated by the sandhi which will always follow
the returned letter. If Alter take a value, the letter is equivalent to the letter returned by the normal process so,
the returned and the Alter value can be exchanged and the distance between the letters is zero.

The first four lines treat the letter .m — m. , anusvāra — in different contexts: if this letter is followed by a
letter belonging to one of the subsets GUTT, PALA, DENTA, LABIA, defined in Table 2, there could be, in some
manuscript, an alternate letter for it. This is mainly due to scribe habits and we must make the software aware
of this. For instance the word aṅka can also be written am. ka, in which case we are in the situation .m/GUTT;
according to the instruction: Alter=LNQU; return LMPO;, while comparing our virtual sam. hitapāt.ha with
a mātr. kāpāt.ha, if, at the same place in two mātr. kāpāt.ha, the comparison software reads a.mka or a"nka, no
variant will be reported and the value of the distance distance between a.mka or a"nka is zero. A similar
situation occurs for the readings pa.n.dita/pa.m.dita (.m/PALA) or sandhi/sa.mdhi (.m/DENTA)
or sambhuu/sa.mbhuu (.m/LABIA).

The variable Next is used whenever the sandhi rule induces the production of a new character next to the
character (or string) concerned by the sandhi.

For instance, if we have: tanmuule+a.s.tayute, the e before the lemmatization sign will remain, but the a
will be elided and replaced by an avagraha; this is the meaning of the rule in line 8: if we have e{LEMM}a then e is
kept: return LE and next to it an avagraha is produced: Next=LAVA; so we get: tanmuule.a.s.tayute.

The same procedure is done with the last line of the table: if a word is ended by as and followed by a blank
space, as is dropped (meaning of “/ ”), a is returned followed by a visarga: Next=LHPO.

Line 6 contains the premises of further difficulties: it states that the letter a or aa followed by a lemmatization
sign and the by the letter a or the letter aa (correponding to the sanskrit letter a and ā in traditional transliteration)
will become the LABAR code (corresponding to the letter aa: ā). Two letters and the lemmatization sign will
become a single letter. Consequently, if a variant occurs which concerns the letter aa the program will not know
if the variant concerns the word of the padapāt.ha before or after the lemmatization sign.

First example. If we have in the padapāt.ha: "sabda artha.h, it will become "sabdaartha.h in the
sam. hitapāt.ha. If we have in the mātr. kāpāt.ha: sabde.artha.h, the program will have to decide between some
of the following possible solutions:
"sabda has been changed into "sabde and artha.h has been changed in .artha.h
"sabda has been changed into "sabd and artha.h has been changed in e.artha.h
"sabda has been changed into "sabde.a and artha.h has been changed in rtha.h
Second example. If we have the padapāt.ha: asya+artha.h, it will become asyaartha.h in the

sam. hitapāt.ha. If we have in the mātr. kāpāt.ha: asyaa artha.h, as the program, in the lexical preprocessing,
removes the spaces in the mātr. kāpāt.ha, it will have to decide between some of the following possible solutions:
asya has been changed into asyaa and artha.h stays unchanged.
asya has been changed into asyaa and artha.h has been changed in rtha.h.
Third example. If we have the padapāt.ha: iti+u kaare.na+a kaara aadaya.h, it will come in the

sam. hitapāt.ha as ityukaare.naakaaraadaya.h. If we have in the mātr. kāpāt.ha:
ityukaare.nekaaraadaya.h, the comparison can be very confusing because one word is completely

missing: the a in a kaara. This creates a very important problem: we had not imagined at the beginning of our
work that a complete word could disappear if only one letter was missing.

4. COMPARING THE SANSKRIT MANUSCRIPTS WITH THE TEXT OF THE EDITION

In this section we will come to the heart of our research. We compare, sentence by sentence, the text of each
mātr. kāpāt.ha (i.e. a collated manuscript), purged of every collation commands, with the padapāt.ha transformed
into a sam. hitapāt.ha.

FISSCL-110

Proc. of FISSCL, Paris, October 29-31, 2007

For each comparison we start to align each mātr. kāpāt.ha sentence, word by word, with those of the
sam. hitapāt.ha. This comparison uses the word limits provided by the lemmatization done in the padapāt.ha. We
use a basic tool: the Longest Common Subsequence (LCS) algorithm to begin our alignment process.

In the following, we describe the LCS algorithm by giving an example. Then we explain why the use of the LCS
still raises some problems. We can solve some on these problems by carefully sailing through the LCS matrix,
thanks to the limits provided by the padapāt.ha.

Even with such a help, and a careful navigation through the solution spaces, we have to keep track of a various
number of possible solutions in order to compute a score attached to each possible solution. This score allows us
to choose the most suitable one.

Roughly speaking, an alignment between two characters string A and B is a one to one correspondence of
the characters of A with the characters of B or with the empty character denoted “ ”. The alignment process
is symmetrical. Generally different possible alignments exist between two strings. Table 6 give three different
possible alignments between A = aaabbb and B = aaacbb.

a a a b b b
a a a c b b

a a a b b b
a a a c b b

a a a b b b
a a a c b b

Table 6: Examples of possible alignments

4.1. The Longest Common Subsequence algorithm.
The Longest Common Subsequence (LCS) algorithm is a well-known algorithm used in string sequence compari-
son. The goal of this algorithm is to provide a longest common substring between two character strings.

More precisely, given a sequence X = 〈x1, x2, ..., xm〉, another sequence Z = 〈z1, z2, ..., zn〉 is a sub-
sequence of X if there is a strictly increasing sequence of indices 〈i1, i2, ...ik〉 such that zj = xij for each
j ∈ [1 : k]. For example, if X = 〈A, B, C, D, A, B, C〉 then Z = 〈B, D, B, C〉 is a subsequence of X .
A common subsequence to sequences X and Y is a subsequence of both X and Y . Generally there is more than
one LCS. We denote |X| the length of X , and X[i] the ith character of that sequence.

Computing the LCS is equivalent to computing an edit distance between two character strings. An edit distance
between sequences X and Y is the minimum number of operations such as suppression, addition and replacement
(in term of characters) needed to change the sequence X into Y . An edit distance that is computed without the
replacement operation is sometimes called LCS distance by some authors. This function is a kind of dual length
of the length of an LCS between X and Y (see, for more details, Crochemore et al. (2001), chapter 7). The length
of a LCS between X and Y will be denoted lcs(X, Y) or simply lcs if there is no ambiguity. The edit distance
and the LCS can be computed efficiently by the dynamic programming algorithm.

Once the computation of an lcs is achieved, one can compute an alignment of the two sequences. Most of the
time, one considers any of the alignments as equivalent. It will not be the case here, because the comparison is
based on words, not only on characters.
Example 1. Let us compute the lcs between two (simple) Sanskrit texts: X = yamaan, Y = yamin. Note that
according to the Velthuis transliteration aa is a single letter: long a (ā).

y a m i m

0 0 0 0 0 0
y 0 1 1 1 1 1
a 0 1 2 2 2 2
m 0 1 2 3 3 3

The Unix diff command is based on this algorithm.

FISSCL-111

Proc. of FISSCL, Paris, October 29-31, 2007

aa 0 1 2 3 3 3
m 0 1 2 3 3 4

Table 7: Computation of an LCS matrix T.

The value of the lcs, here 4, is displayed at the bottom right corner of the matrix T. The distance between the
two sequences is d(X, Y) = |X| + |Y | − 2 ∗ lcs(X, Y). In this exemple d(X, Y) = 5 + 5 − 2 ∗ 4 = 2 (the
letter m is suppressed and the letter aa is added).

The matrix is initialised to zero, and each score is computed by:

T [i, j] =

{
T [i − 1, j − 1] + 1 if X[i] = Y [j],
max{T [i − 1, j], T [i, j − 1]} otherwise.

The score T [i, j] gives the value of the lcs between subsequences X[1 : i] (the i first characters of the se-
quence X) and Y [1 : j]. These subsequences are defined as the first i letters of X and j letters of Y respectively.
Each score T [i, j] can be computed using some adjacent scores as shown in the previous formula. The complexity
of the matrix computation is obviously in O(|X||Y |). In this example, the LCS matrix generates exactly the two
following symmetrical alignments.

y a m i m y a m i m
y a m aa m y a m aa m

Table 8: The two possible alignments.

The alignment can be read in the following way: when letters are present in the same column of the two rows,
they belong to the LCS. When a letter l is present with an opposite “-”, then l can be considered either as added
in the line where it appears, or suppressed from the line where the opposite “-” is present.

Example 2. The comparison between two short sentences, as shown in Figure 1, describes the way we proceed
and what kind of result can be expected. The sentences compared in this example are:
tasmai śrı̄gurave namas and śrı̄gan. eśāya namah. , which are encoded:

tasmai "srii gurave namas and "sriiga.ne"saaya nama.h

Note that the first sentence (X) belongs to the padapāt.ha, the second (Y) to a mātr. kāpāt.ha, and that the character
“ ” (underscore) is a lemmatization sign.

FISSCL-112

Proc. of FISSCL, Paris, October 29-31, 2007

Figure 1: A second example.

The matrix in Figure 1 contains all the possible alignments, one of them being the alignment in Table 9. We can
see that the string tasmai is missing in the mātr. kāpāt.ha, that the string "srii is present in both sentences,
that gurave is replaced by ga.ne"saaya, and that the string nama.h is present in both sentences but under
two different aspects: ”nama.h” and ”namas”. The rule that states the equivalence between character .h and
character s is one of the sandhi’s (see: 3.2). The following alignment is one of the possible results, the separation
between words of the padapāt.ha being represented by double vertical lines.

We can see in this example that the value of the lcs(X, Y) is 14 and it appears in the right bottom corner of the
table. The distance between X and Y expressed in terms of letters is:

d(X, Y) = |X| + |Y | − 2 ∗ lcs(X, Y) = 16 + 19 − 2 ∗ 14 = 7
In terms of words, one word is missing: tasmai; the word gurave can be considered as replaced by

ga.ne"saaya or missing in the padapāt.ha and ga.ne"saaya added in the mātr. kāpāt.ha. The value of the
distance in terms of words will be either two or three according to the definition of the replacement operation.

t a s m ai "s r ii g u r a v e n a m a s
"s r ii g a .n e "s aa y a n a m a .h

Table 9: The corresponding alignment.

During our comparison process, we must keep in mind that our final goal is to provide a difference between a
mātr. kāpāt.ha and the padapāt.ha in terms of words. To appreciate the quality of this difference, an implicit criterion
is to say that the fewer words concerned, the better the criterion, all things being equal, the word boundaries
being provided by the padapāt.ha.

Consequently, in what follows we will choose, whenever possible, the solution which not only minimises the
number of words concerned, but also, as far as no other criteria are involved, minimises the number of letters
concerned.

FISSCL-113

Proc. of FISSCL, Paris, October 29-31, 2007

1c1
< "sriigane"saayanama.h

> tasmai"sriiguravenama.h

1d0
< tasmai
4c3,5
< gurave

> gane
> "
> saaya

Word 1 ’tasmai’ is :
- Missing
Word 2 ’"srii’ is :
- Followed by Added word(s)
’ga.ne"saaya’
Word 3 ’gurave’ is :
- Missing

diff without space diff with space Our results without space

Table 10: different comparisons

4.2. Why not use the diff algorithm
The authors very first idea was to use diff in order to obtain the differences between two sanskrit sequences. It
is stated in diff documentation that the inspiration of the actual version of diff was provided by the paper of
Myers (Myers 1986).

But the results were quite disapointing. The classical diff command line provided no useful information at all.
The result of the comparison of the two following sequences: "srii ga.ne"saaya nama.h and tasmai
"srii gurave namas just said that they were different.

We obtained a slightly better result with Emacs ediff, as shown in Table 10, middle column: we can see
which words are different. But as soon as we wanted to compare the same sequences without blank, we could not
get a better result using ediff than using diff. This is why we started to implement our own algorithm. Its
results appear in the right column of Table 10. We can see that they are expressed in term of words.

• Concerning diff and Myers’s paper and all the derivated litterature, the emphasis is lain on the performance,
for time as well as for space.

• Concerning our algorithm, no optimization has been applied, the main goal is to use the padapāt.ha as a
template on a mātr. kāpāt.ha to determine, as well as possible, the end of words. Once we have determined
the one to one correspondance between the words of the mātr. kāpāt.ha and of the padapāt.ha, we are nearly
finished and there only remains to compare two Sanskrit letter strings to see their differences. Obviously, the
added or missing words have to be noted carefully.

4.3. Sailing through the LCS matrix
The LCS matrix is only a base for further computations. What we need is an alignment which can provide us
with some reasonable results. Each alignment corresponds to a path within the matrix. A short explanation of the
construction of an alignment can be found in the first chapter of (Charras & Lecroq (website)) or in (Crochemore
2003).

The matrix provides alignments coming from the rightmost lowest corner to the leftmost upper corner (inverse
order from the usual reading direction) in the following way:

1. if T [i, j] < T [i + 1, j + 1] and if X[i] = Y [j] we move (left and up) from T [i + 1, j + 1] to T [i, j]
and in this case, the score, which is decreased by 1, indicates that a (common) letter has been added to the left

of the alignment. A =
(

X[i]
Y [j]

)
.A (the dot indicates the concatenation operation).

2. otherwise, if T [i, j] < T [i, j + 1] we move vertically up one row and add
(

X
−

)
at the beginning of the

alignment A =
(

X
−

)
.A.

FISSCL-114

Proc. of FISSCL, Paris, October 29-31, 2007

Figure 2: The different alignments within the matrix.

3. otherwise, we move horizontally one column left. In this case, add
(

−
X

)
to the alignment.

Figure 2 (p. 115) presents all the alignments provided by the LCS algorithm in an LCS matrix. The dark grey
line depicts the chosen alignment, and the light grey lines represent other alignments also provided by the LCS
algorithm. The sequence X belonging to the padapāt.ha, the alignments are selected in order to maximise the
number of consecutive letters belonging to X . This choice reduces the risk for two parts of the same word in the
padapāt.ha to be identified with two different subsequences of the mātr. kāpāt.ha.

The chosen alignment corresponding to the dark grey line is depicted in Table 11.

v ai d i k aa n aa .m l au k i k aa n aa .m
l au k i k aa n aa .m v ai d i k aa n aa .m

Table 11: The chosen alignment.

It may be pointed out that when the different paths through the matrix form a square (no common letters can be
found between X and Y at this place), the number of possible alignments grows very quickly. If N is the size of
the square, the number of different alignments generated by each square is:(

2N
N

)
=

(2N) !

N ! N !
To provide a good idea of the possible number of paths, if we have a matrix which contains two ten by ten

squares we get approximately 39×109 different possible alignments. This number expresses how complicated the
comparison of Sanskrit texts is, and excludes any method that would require to examine all the possible alignments
produced by the LCS algorithm.

FISSCL-115

Proc. of FISSCL, Paris, October 29-31, 2007

4.4. Optimization: some navigation rules
In order to restrict the number of alignments, we will provide some navigation rules within the matrix. These
navigation rules will greatly limit the number of solutions to be considered but they are unable to provide a good
solution by themselves. Other steps are necessary to obtain a solution which gives some satisfaction to the philol-
ogists.

Let us try to give an idea of the different navigation rules implemented within the program. They concern the
best way to choose a path (corresponding to an alignment) in the LCS matrix. Though in the preceding paragraph
we described, for mathematical reason, the navigation through the matrix in the upward direction, right to left, we
will now describe this navigation in the usual order, downward, and left right, which is easier to understand.

As a first remark we must notice that when the different paths form a square which corresponds to a place where
there is no letter in common between the strings X and Y , we always go down first as in table 2. It induces to
write in the alignment the part of the padapāt.ha corresponding the square first, then write the corresponding part
of the mātr. kāpāt.ha.

But the great question we will always keep in mind during the navigation through the matrix is: shall we align
the soonest or the latest sequence? The answer to this question will determine the navigation rules.

Table 12 shows two examples, the left one needs to be aligned the latest in order to provide the good result, on
the contrary, the right one needs to be aligned the soonest. In each figure, the right path will be displayed in dark
grey, the wrong one in light grey.

• On the left example, we see the comparison between two strings, in the mātr. kāpāt.ha: a˜n and in the
padapāt.ha: a.n a˜n. The LCS matrix is displayed in Table 12 a) and the corresponding alignment in
Table 14. The left solution in the table is the best according to common sense, it is also the best according to
our criterion: the fewer words concerned, the better the criterion. The conclusion of this alignment is: the
string .n is missing in the mātr. kāpāt.ha.

• On the right example we see the comparison between two strings, in the mātr. kāpāt.ha: .na and in the
padapāt.ha: .na na. The LCS Matrix is displayed in Table 12 b) and the corresponding alignment in
Table 13, the left one is the best according to common sense, it is also the best according to our criterion. The
conclusion of this alignment is: the string na is missing in the mātr. kāpāt.ha.

a) Align the latest b) Align the soonest
Table 12

Our examples are sometimes taken from Sanskrit manuscripts, sometimes built for demonstration purpose, without any Sanskrit mean-
ing.

FISSCL-116

Proc. of FISSCL, Paris, October 29-31, 2007

a .n a ˜n a .n a ˜n
a ˜n a ˜n

the light grey line (bad) the dark grey line (good)
Table 13: Align the latest

.n a n a .n a n a

.n a .n a

the light grey line (bad) the dark grey line (good)
Table 14: Align the soonest

Our second example is different with a mātr. kāpāt.ha involving more letters than the padapāt.ha. The correspond-
ing alignments can be seen in Table 16. Only the good alignments are displayed.

a) rule 2 b) rule 3
Table 15

a v i
bh a v i a v i

Align the latest.

a v i
a v i bh a v i

Align the soonest.

Table 16:

What kind of conclusion can we draw from these apparently contradictory samples?

1. By default align the latest.

2. If, while aligning the soonest, we cross one of the padapāt.ha word boundaries, then align the soonest.

3. If the choice occurs at the end of a padapāt.ha word, then align the latest without further checking.

4. If, while aligning the soonest, we cross one of the padapāt.ha word boundaries, then align the soonest.

FISSCL-117

Proc. of FISSCL, Paris, October 29-31, 2007

The limit of words which are determined by the padapāt.ha are the major determinant of the navigation rules.
The rules displayed here are not complete, others exist (not described here), but they are more or less based on the
same principles.

4.5. Improvement of the initial LCS alignment by the use of a score
As the first author of this paper has absolutely no knowledge of Sanskrit, he was looking for evaluating this result,
and he found that our first criterion if fewer words are concerned, the criterion is better must be followed by
another one: the compactness of the alignment.

The following example provides an idea of what we expect:

.r k aa r e e v a a c k aa r y aa .n i

.r aa r y aa .n i

The alignment has been built according to the navigation rules. It can be interpreted as: the word kāre is replaced
by ār, the words eva and ac are missing, the word kāryān. i is replaced by yān. i.

.r k aa r e e v a a c k aa r y aa .n i

.r aa r y aa .n i

The second alignment is built taking compactness into account, it can be interpreted as: the words kāre, eva
and ac are missing, the word kāryān. i is replaced by āryān. i, (the letter k is missing), which is obviously the best
solution.

4.6. Problems which cannot be solved by the LCS
The identification of words in the mātr. kāpāt.ha, as implicitly defined from the previous alignments, is not com-
pletely satisfactory. Indeed the maximisation of the lcs cannot fulfill our purpose, because the value of the lcs
is only related to the notion of character, whereas our aim is to compare the texts word by word. Once the align-
ment is obtained, the words of the mātr. kāpāt.ha are not really identified. To improve this alignment we propose a
procedure which consists in local changes of the alignment to fulfill the following two rules:

1. Two words cannot be considered as similar if they do not share at least 50% of their characters (very short
words must be considered apart).

2. Considering that words can be suppressed, added, or replaced in the mātr. kāpāt.ha, the desired alignment has
to minimise the number of those operations.

Notice that the second rule matches exactly the definition of the edit distance, but in terms of words instead
of characters as is usually the case. The results provided by these two rules were approved by the philologists
in charge of the Sanskrit critical edition. To illustrate our approach let us compare the following two texts:
upadi"syate mahaa .n in the padapāt.ha and a mātr. kāpāt.ha with: upadi.syata.n. The LCS algorithm
provides an alignment with an lcs of 10 that does not fulfill rule number 1.

u p a d i "s y a t e m a h aa .n
u p a d i .s y a t a .n

This involves the following conclusions:

• The string upadi"syate is replaced by upadi.syat

• The word mahaa is replaced by a

FISSCL-118

Proc. of FISSCL, Paris, October 29-31, 2007

The next alignment is not optimal for the LCS criterion, because its lcs is only 9, but is preferable because the
first rule is satisfied:

u p a d i "s y a t e m a h aa .n
u p a d i .s y a t a .n

• the string upadi"syate is replaced by upadi.syata

• the string mahaa is missing

It appears that the improvement of the initial alignment consists in asserting that the string mahaa is missing
instead of stating that the string maha is replaced by a.

4.7. Pending problems

There are two major lacks in the software:

• If a long text is added to the mātr. kāpāt.ha we are unable to see what are the words that compose it, because
the padapāt.ha is useless in this case.

• More important, we missed an important point at the beginning of the software conception: if a word is
changed or is missing in a text, most probably sandhi will be changed. But the sandhi rules are applied at the
beginning of the process, during the transformation of the padapāt.ha into the sam. hitapāt.ha, so we may have,
in some cases, to reconsider the sandhis at the end of the process.

5. DISPLAYING THE RESULT

The results of the comparison program are first displayed as a log file as it was the best way for the necessary
program tuning.

Paragraph 3 is Missing in File Asb2

(P3) Word 6 ’paaraaya.na’ is:
- Substituted with ’paaraya.naa’ in Manuscript ba2

(P3) Word 11 ’saara’ is:
- Substituted with ’saadhu’ in Manuscript aa

(P3) Word 17 ’viv.rta’ is:
- Followed by Added word(s) ’grantha"saa’ in Manuscript A3

(P3) Word 18 ’guu.dha’ is:
- Missing in Manuscript A3

(P3) Word 21 ’viudpanna’ is:
- Substituted with ’vyutpannaa’ in Manuscript A3

(P3) Words 22 to 23 ’ruupa siddhis’ are:
- Missing in Manuscript A3

(P3) Word 32 ’k.rtyam’ is:
- Substituted with ’karyam’ in Manuscript A3
- Substituted with ’kaaryam’ in Manuscripts aa, am4, ba2

After a conversion of these logged information into XML language, from which we can obtain a HTML file
which can provide us an interactive version of the critical edition. Figure 3 gives an example of such a display.

FISSCL-119

Proc. of FISSCL, Paris, October 29-31, 2007

Figure 3: Example of interactive display of the results

6. CONCLUSION

In this paper we have proposed a method to compare different versions of the same Sanskrit text. The alignments
provided by the LCS algorithm between two texts, considered as a sequence of characters, is not always sufficient,
but provides a good initialisation for further processing that considers each of the two texts as sequences of words.

The critical edition provided by such improved alignments has been submitted to philologists and has been
approved in its essential part. Nevertheless a more intense use of the software should enable us to improve and
justify the setting of our empirical approach. There is also a serious need to completely rewrite the software to
avoid the different dead end procedures which are still present and make the program maintenance too complicated.
We also need to make more experiments for a better tuning.

The program works at a reasonable speed. With a padapāt.ha of approximately 300 lines, and 45 different
mātr. kāpāt.ha the time needed for the comparison process is approximately 25 seconds. It seems to be quite rea-
sonable.

However, the absence of a Sanskrit lexicon constitutes a limit to our approach: in the case of an addition of long
sentences to a manuscript, it is impossible to detect words which have been added, for we can only consider the
addition in terms of sequence of characters.

7. REFERENCES

CROCHEMORE, M., HANCART, C. and LECROQ, T. (2001): Algorithmique du texte. Vuibert, Paris.

GALE, W. A. and CHURCH, K. W. (1993): A Program for Aligning Sentences in Bilingual Corpora. Com-
putational Linguistics 19(3), 75–102.

DEL VIGNA, C. and BERMENT, V. (2002) Ambiguı̈tés irréductibles dans les monoı̈des de mots, Actes des
9émes journées montoises d’informatique théorique, Montpellier, Sept 2002.

FISSCL-120

Proc. of FISSCL, Paris, October 29-31, 2007

CHARRAS, C. and LECROQ, T. http://www.igm.univ-mlv.fr/ lecroq/seqcomp/seqcomp.ps

HARALAMBOUS, Y. Fontes et Codages, Editions O’reilly, Paris 2004

HIRSCHBERG, D. S. (1975). A linear space algorithm for computing maximal common subsequences.
CACM 18:6 341-343.

HUET, G. (2006): Héritage du Sanskrit: Dictionnaire Français-Sanskrit.
http://sanskrit.inria.fr/Dico.pdf.

HUET, G. (2004): Design of a Lexical Database for Sanskrit. COLING Workshop on Electronic Dictionaries,
Geneva, 2004, pp. 8–14.

HUNT, J.W. and SZYMANSKI, T.G. (1977): A fast algorithm for computing longest common subsequence
CACM 20:5 350–353.

INSTITUTE FOR NEW TESTAMENT TEXTUAL RESEARCH (2006): Digital Nestle-Aland. Münster
University. http://nestlealand.uni-muenster.de/index.html.

LE POULIQUEN, M. (2007): Filiation de manuscrits Sanskrit et arbres phylogénétiques. Submitted to
Mathématiques & Sciences Humaines.

LESK, M. E. and SCHMIDT, E., (1975): M.E. Lesk. Lex - a lexical analyzer generator. Computing Science
Technical Report 39, Bell Laboratories, Murray Hill, NJ.

MONROY C., KAOCHUMAN R., FURUTA R, URBINBINA E., MELGOZA E., GOENKA A. (2002):
Visualization of Variants in Textual Collations to Analyse the Evolution of Literary Works in the Cervantes
Project. Proceedings of the 6th European Conference, ECDL 2002. (Rome, Italy, September 2002). Maristella
Agosti and Constantino Thanos, eds. Berlin: Springer, 2002. 638-53.

MYERS, E.W. (1986): An O(ND) Difference Algorithm and its Variations” Algorithmica Vol. 1 No. 2, 1986,
p 251.

OHARA, R. J., and ROBINSON P.M.W. (1993): Computer-assisted methods of stemmatic analysis. Occa-
sional Papers of the Canterbury Tales Project, 1: 5374. (Publication 5, Office for Humanities Communica-
tion, Oxford University.)

PAXSON, V. (1996): GNU Flex Manual, Version 2.5.3. Free Software Foundation, Cambridge, Mass.
http://www.gnu.org/software/flex/manual/

RENOU L. (1996): Grammaire sanskrite: phonétique, composition, dérivation, le nom, le verbe, la phrase,
Maisonneuve réimpression, Paris.

SAITOU, N. and NEI, M. (1987): The Neighbour-Joining Method: a New Method for Reconstructing Phy-
logenetic Trees. Molecular Biology Evolution 4, 406–425.

VELTHUIS, F. (1991): Devanāgarı̄ for TEX, Version 1.2, User Manual, University of Groningen.

FISSCL-121

Proceedings of the First International Symposium on Sanskrit Computational Linguistics, Paris,France, October 29-31, 2007

FISSCL-122

Index of Authors

A
Agrawal,Muktanand 47
Aroras, Vipul 23

B
Behera, Laxmidhar 23
Bhadra,Manji 47

C
Csernel, Marc 103

G
Gillon, Brendan 1
Goyal, Pawan 23

H
Hellwig, Oliver 37
Hyman, Malcolm. 13

J
Jaddipal, V 97
Jha, Grirish Nath 47

K
Kulkarni, Malhar 67

M
Mani,Diwakar 47
Mishra, Anand 89
Mishra, Diwakar 47

Mishra, Sudhir K 47

P
Patte, François 103

S
Scharf, Peter M 77
Sheeba,V . 97
Singh, Surjit K 47
Subhash . 47

V
Varakhedi, Srinivas 97
Vasudevashastri, M M 67

	Program
	Monday October 29th 2007
	Opening session (10 am - 10:45 am)
	Invited lecture by Pr. Paul Kiparsky (11 am - 12 noon)
	Session 1(2pm - 4 pm)
	Exocentric Compounds in Classical Sanskrit
	Brendan Gillon

	From Paninian Sandhi to Finite State Calculus
	Malcolm D Hyman

	Tuesday October 30th 2007
	Session 2(10 am - 12 noon)
	Analysis of Samskrit Text: Parsing and Semantic Relations
	Pawan Goyal
	Vipul Arora
	Laxmidhar Behera

	SanskritTagger, a Stochastic Lexical and POS tagger for Sanskrit
	Oliver Hellwig

	Session 3(2 pm - 4 pm)
	Inflectional Morphology Analyzer for Sanskrit
	Girish Nath Jha
	Muktanand Agrawal
	Subhash
	Sudhir K Mishra
	Diwakar Mani
	Diwakar Mishra
	Manji Bhadra
	Surjit K Singh

	Phonological Overgeneration in the Paninian system
	Kulkarni, Malhar
	Vasudevashastri, M M

	Workshop(4:15 pm - 5:45 pm)

	Wednesday October 31st 2007
	Session 4(10 am - 12 noon)
	Modeling Paninean Grammar
	Peter Scharf

	Simulating the Paninian system of Sanskrit Grammar
	Anand Mishra

	Session 5(2 pm - 4 pm)
	An Effort to Develop a Tagged Lexical Resource for Sanskrit
	Srinivas Varkhedi
	V Jaddipal
	V Sheeba

	Critical Edition of Sanskrit Texts
	Marc Csernel
	François Patte

	Workshop(4:15 pm - 5:45 pm)

	Index of Authors

