
Sanskrit and Computational Linguistics

Akshar Bharati,
Amba Kulkarni

Department of Sanskrit Studies
University of Hyderabad

Hyderabad
apksh@uohyd.ernet.in

30th Oct 2007

1 Introduction

How a language communicates information intrigued Indian thinkers since mil-
lenia. This led to different theories of language analysis. Pān. ninis grammar saw
the culmination of different thoughts into his monumental work ashtādhyāyi.
The modern age of information theory has provided a new boost to the studies
of ashtādhyāȳı from the perspective of information coding.

The importance of ashtādhyaȳı is three fold. The first one, as is well known,
as an almost exhaustive grammar for any natural language with meticulous
details yet small enough to memorize. Though ashtādhyāȳı is written to de-
scribe the then prevalent Sanskrit language, it provides a grammatical frame-
work which is general enough to analyse other languages as well. This makes
the study of ashtādhyāȳı from the point of view of concepts it uses for language
analysis important. The third aspect of ashtādhyāȳı is its organization. The
set of less than 4000 sūtras is similar to any computer program with one major
difference the program being written for a human being and not for a machine
thereby allowing some non-formal or semi-formal sūtras which require a hu-
man being to interpret and implement them. Nevertheless, we believe that the
study of ashtādhyāȳı from programming point of view may lead to a new pro-
gramming paradigm because of its rich structure. Possibly these are the reasons,
why Gerard Huet feels that Panini should be called as the father of informatics1.

The Indian grammatical tradition with three schools of shābdabodha viz.
vyākaran. a, nyāya, and mı̄mānsā offer various levels of linguistic analysis which
is directly relevant to computational linguistics.

1Inaugural speech at the First International Sanskrit Computational Symposium, 2007.

1



Apart from the ashtādhyāȳı and the grammatical tradition, the rich knowl-
edge base in Sanskrit has been a source of attraction for both Indian as well
as western scholars. Sanskrit was at one time ”Lingua Franca” of the world
of intellectuals, in addition to being a spoken language. As such, we find San-
skrit rich with many scholarly texts in different disciplines of studies – ranging
from Astronomy, Āyurveda to different schools of Philosophy. Computational
Linguistics can play a major role in developing appropriate tools for Sanskrit,
so that this rich knowledge can become available to the interested scholars easily.

Thus both Sanskrit and Computational Linguistics have a lot to offer to
each other. Akshar Bharati group has been engaged in both the tasks viz,. the
task of developing computational tools for Sanskrit as well as the task of using
Indian Grammatical thought for the analysis of other Indian Languages.

We first give a brief sketch of Akshar Bharati et al’s work in the area of
Sanskrit for Computational Linguistics followed by its work in the area of Com-
putational Linguistics for Sanskrit.

2 Sanskrit for Computational Linguistics

2.1 Theoretical Aspect

It is believed by many scholars that though Pān. ini has written a grammar for
Sanskrit, the concepts he used are general ones and thus it providesa frame-
work to write grammars for other languages. As a first step towards applying
Pān. inian grammar, a parser based on Pān. inian Grammar formalism was devel-
oped to analyse Hindi sentences. This parser based on kāraka theory used In-
teger Programming to analyse simple Hindi sentences.(Bharati, 1994) A tagged
corpus for Indian languages is also being developed based on Pān. inian Gram-
mar, at LTRC, IIIT, Hyderabad.

Pān. inian Grammar gives utmost importance to the ”information” coded in
a language string. The svatantraH kartā(P 1.4.54) of Pān. ini establishes the fact
that what can be extracted from a language string are the only kāraka relations,
and not the thematic roles. To extract thematic roles, one needs to appeal to
the world knowledge. But what a language codes through its coding scheme is
only the kārakas.
E.g. consider the sentences

rāmaH tālam udghāt.ayati.
kuncikā tālam udghāt.ayati.

tālaHudghāt.yate.

We see that in all these sentences, rāmaH, kunchikā and the tālaH are the
kartās of the verbs udghāt, whereas they do not have the same thematic roles.

2



To assign the thematic roles, one needs to appeal to the general knowledge.

Akshar Bharati group is also looking at English from Pān. inian perspec-
tive(Bharati,2005). It was observed that the major difference between English
and Indian languages say, e.g. Hindi, are that English does not have an overt
accusative marker at phonemic level and also there is no morpheme in En-
glish corresponding to yes-no question marker in Hindi. The information loss
caused by the absence of phonemic level accusative marker is compensated by
the sacroscency of Subject position in English. This brings in several structural
differences between Hindi and English which have been illustrated in the figure 1.

Figure 1: Structural contrast between English and Hindi

2.2 Practical Aspect

On practical side of this, Akshar Bharati has developed anusārakas a language
accessors, to cater to the needs of people who want to aceess material in lan-
guages unknown to them.

3



Translation involves not only transfer of content but also creativity in ex-
pressing the source language content into target language. In general any two
languages are incommensurate in their expressions. This makes translation lack
faithfulness. In other words, there is always a tension between faithfulness and
naturalness. If one wants to ascribe to faithfulness to the content in the source
language(SL), one has naturally to give up the naturalness or beauty of the tar-
get language(TL). The moment one tries to translate a SL text to sound natural
in TL, some factor of ’unfaithful’-ness to the SL creeps in.

Therefore, if one is interested in reading some serious texts such as texts on
laws or some scientific texts, one would not like to depend upon the translation
but rather one would like to look at the original texts and interpret them on
his/her own. To look at the original texts, then one should know the source
language perfectly. However, this is not an easy task. The question is - can
computers help a serious reader, say of Sanskrit, to understand the Sanskrit
texts with the help of computers?

Anusāraka or language accessor attempts to provide such a help to the se-
rious reader. It distinguishes between the reliable sources of information from
the heuristic sources. The output is generated in layers with the topmost layer
producing the image of the source text and other layers providing the graded
output leading to Machine Translation.

Our major effort is in the area of English-Hindi anusāraka system(Kulkarni,
2003). However, over the past few years, we have also looked at Sanskrit-
Hindi pair and some prototypes are available for demonstration. Unlike Ma-
chine Translation(MT), anusāraka is aimed as a language accessor and not a
MT system giving just final translation. Here the user is an important and
integral part of the system. Anusāraka differs from MT in two different ways:

• The architecture of anusāraka ensures that modules with high reliability
are used before the modules with less reliable outputs, thereby ensuring
maximum benefits at the early modules. To avoid the cascading of in-
termediate outputs leading to more unreliability, output at each level is
made available to the user.

• An intelligent user interface not only allows the user to hide the undesired
information but also provides context based help. The advantage of this
interface is that the user has full control over the interface and thus he/she
can display only the information of his/her own choice curtailing or hiding
the other information.

In what follows we explain in brief the working of Sanskrit-Hindi anusāraka with
sample screen shots of Sanskrit-Hindi anusāraka outputs.

4



1. Fig 2 contains screen shot of simple Sanskrit sentences, delimited by green
strip, marking boundary of a sentence. Each word is being shown in
different cell of a table. It is assumed that the words have been split
manually before feeding the text to anusāraka.

Figure 2: Sanskrit text – with pada pātha

2. Fig 3 contains morphological analysis corresponding to each word. For ex-
ample the morphological analysis of the word chātra.h is chātra {1} {pu.
e. },
where chātra is the prātipadika,
1 – vibhkati {case}
pu – gender -masculine
e. – number - singular

Similarly,
gamlṙ {1 lat a-eka}
stands for
dhātu: gamlṙ
1 –> gaṅa
lat –> lakāra
a –> person - 3rd person
eka –> number - singular

This kind of analysis is useful for anybody who has some basic knowledge

5



Figure 3: Sanskrit text – with morph analysis

of Sanskrit morphological analysis, and has a good vocabulary of Sanskrit.
For example, any Indian with good knowledge of mother tongue, and some
background of Sanskrit should find this layer of immense use.

In this step, as one can see, if there are multiple morphological analysis
possible, all the answers for each word are being displayed. It is the con-
text that decides which one is the correct answer. At this stage, machine
does not take any decision, since a morphological analyser analyses single
word at a time.

One can then think of another layer, similar to a Part of Speech tagger,
where machine uses some heuristic rules to rule out undesirable answers.
Of course, the reliability of this layer can not be 100%.

One can think of several such layers, starting from marking say correct
morphological Analysis to grouping the visheshya-visheshanas, local word
groupings such as ’rāmen. a saha’, ’gacchati sma’ etc., to kāraka analysis
and sharing of kārakas - that requires a full fledged parser, and finally a
Word Sense Disambiguation module. However, at each stage the reliability
of the system goes down and the cascading effect will further reduce the
reliability of translation.

3. Figure 4 provides Hindi gloss for each word with separate glosses for the
root and the suffix. The meaning of a word is then composed by the word

6



generation module. In case the meaning is non compositional, it is directly
provided in the dictionary as an exception.

Figure 4: Sanskrit text – with hindi meaning

4. If a parser exists, the next layer (see fig 5) takes care of agreement and
generates the Hindi or target language output. In the present case, since
the parser for Sanskrit does not exist, the generated output lacks agrement
information, thereby making the output ungrammatical at times.

If one is interested in only Machine Translation like output, one can hide
all tother rows and see only the final layer output as shown in the figure
6.

7



Figure 5: Sanskrit text – with hindi generation

Figure 6: Sanskrit text – with only hindi output

8



5. Sanskrit is very rich in samāsa formation, as well as its usage. We provide
a hyper link to the analysis of samāsa, as shown in the fig 7. As is obvious
from the interface, after adding necessary modules, this anusāraka also
leads to a full fledged MT system.

Figure 7: samkshipta rāmāyana

In order to develop such a anusāraka, one needs several modules such as mor-
phological analyser, sandhi splitter, samāsa handler, pos tagger, parser, word
sense disambiguator and finally a target language generator.

Akshar Bharati group has developed some of these modules(Bharati,2006).
They are available at http://sanskrit.uohyd.ernet.in. In this session, we have
two presentations related to the morphological analysis and generation of San-
skrit, therefore I’ll make this floor open to our two invitees, by indicating the
complexity of the task involved.

3 Computational Tools for Sanskrit

It is believed that compared to the task of applying Paninian Grammar Formal-
ism to other languages, the task of developing computational tools for Sanskrit
is much easier in view of existence of ashtādhyāyi. It is really perplexing that in
spite of all available resources, still one finds it difficult to various computational

9



tools for analysis of Sanskrit. One of the reasons is that the whole literature
is still inaccessible to the computer scientists and the Sanskrit scholars rarely
turn towards computer science.

The complexity of word formation in Sanskrit may be illustrated by the finite
state automata in fig 8. The ’*’ indicates the starting node of the automata.

Figure 8: Word Formation in Sanskrit

Thus both the ’pratipadika’s as well as ’dhatu’s provide the starting point. The
first level of conjugation involves only two pratyayas – viz. sup and tiṅ.
Thus we have
pratipadika + sup - > subanta e.g. rāmen. a
dhatu + tiṅ - > tiṅanta e.g. gacchati

There are few kridanta suffixes, which produce ’avyaya’s.
e.g. ktvā, tumun, etc. as in
gam + ktvā - > ; gatvā
gam + tumun - > ; gantum

Some of the kridanta suffixes produce new pratipadikas, and thus they take
additionally one more suffix viz. sup, to produce a subanta, as in
gam + śatṙ -> gacchat. This further takes optionally a feminine suffix which is
then followed by a sup. So one may have a form such as ’gacchati’ which may
be analysed as
gam + śatṙ + sup
This results in the second level of word formation requiring two suffixes viz. kr.t
and sup.
Other paths that produce new pratipadikas or dhatu’s are

• pratipadika + sanādi suffix
ex: putra + kyac -> putr̄ıyati
putra + kāmyac -> putrakāmyati

10



kṙs.n. a + kvip -> kṙs.n. ati

• dhātu + sanādi suffix
ex: pipaTas.ti / bobhūyate / gopayati, etc.

• upasarga + dhātu ->
ex. pra + hṙ / A + hṙ / etc.

• The taddhita suffixes generate new pratipadikas, as in daśaratha to dāśarathi.

New pratipadikas may also result from compound formation. There are 6 ways
of compound formation, viz:
sup + sup
sup + tiṅ
sup + pratipadika
sup + dhātu
tiṅ + sup
tiṅ + tiṅ

Though there are 6 possibilities, only some of them are very productive,
and others are very rare. It was found that around 20-25% of the words in
Sanskrit text are compounds. The complexity is further aggravated by the
extensive sandhi formation in Sanskrit.The mandatory sandhi in the formation
of compounds makes it a kind of deadlock situation as illustrated in fig 9.

Thus there is a kind of deadlock situation. However, practically one can
break this deadlock by developing a morphological analyser that handles first
level suffix, viz. tiṅ and sup. It is found that almost 50 to 60% of the words are
analysed at this layer. A separate sandhi splitter which takes inputs from this
morphological analyser can then be developed independently which can then
handle the samāsas also.

Now I invite Dr. Girish Nath Jha followed by Dr. Malhar Kulkarni to make
their presentations.

References

[1] Bharati Akshar, Vineet Chaitanya, Rajeev Sangal, NLP A Paninian Per-
spective, Prentice Hall of India, Delhi,1994

[2] Kulkarni, Amba P., Design and Architecture of anusAraka: An Approach
to Machine Translation, Satyam Techical Review vol 3, Oct 2003, pp 57-64

11



Figure 9: Deadlock in word analysis

[3] Bharati, Akshar, Amba P Kulkarni, English from Hindi viewpoint: A
Paninian perspective, Platinum Jubilee conference of LSI at HCU, Hyder-
abad, Dec 6-8, 2005

[4] Bharati, Akshar, Amba P Kulkarni, V Sheeba, Building a Wide Coverage
Morphological Analyser for Sanskrit: A Practical Approach, invited speech
at ’First National Symposium on Modeling and Shallow Parsing of Indian
Languages’, 31st March - 4th April 2006, IIT Mumbai

12


