
ANALYSIS OF SANSKRIT TEXT: PARSING AND SEMANTIC
RELATIONS

Pawan Goyal
Electrical Engineering,

IIT Kanpur,
208016, UP,

India
pawangee@iitk.ac.in

Vipul Arora
Electrical Engineering,

IIT Kanpur,
208016, UP,

India
vipular@iitk.ac.in

Laxmidhar Behera
Electrical Engineering,

IIT Kanpur,
208016, UP,

India
lbehera@iitk.ac.in

Abstract

In this paper, we are presenting our work
towards building a dependency parser for
Sanskrit language that uses determinis-
tic finite automata(DFA) for morpholog-
ical analysis and ’utsarga apavaada’ ap-
proach for relation analysis. A computa-
tional grammar based on the framework
of Panini is being developed. A linguis-
tic generalization for Verbal and Nomi-
nal database has been made and declen-
sions are given the form of DFA. Verbal
database for all the class of verbs have
been completed for this part. Given a
Sanskrit text, the parser identifies the root
words and gives the dependency relations
based on semantic constraints. The pro-
posed Sanskrit parser is able to create
semantic nets for many classes of San-
skrit paragraphs(��� �����	��
). The parser is
taking care of both external and internal
sandhi in the Sanskrit words.

1 INTRODUCTION
Parsing is the ”de-linearization” of linguistic in-
put; that is, the use of grammatical rules and other
knowledge sources to determine the functions of
words in the input sentence. Getting an efficient
and unambiguous parse of natural languages has
been a subject of wide interest in the field of
artificial intelligence over past 50 years. Instead
of providing substantial amount of information
manually, there has been a shift towards using
Machine Learning algorithms in every possible
NLP task. Among the most important elements
in this toolkit are state machines, formal rule
systems, logic, as well as probability theory and

other machine learning tools. These models,
in turn, lend themselves to a small number
of algorithms from well-known computational
paradigms. Among the most important of these
are state space search algorithms, (Bonet, 2001)
and dynamic programming algorithms (Ferro,
1998). The need for unambiguous representation
has lead to a great effort in stochastic parsing
(Ivanov, 2000).

Most of the research work has been done for
English sentences but to transmit the ideas with
great precision and mathematical rigor, we need a
language that incorporates the features of artificial
intelligence. Briggs (Briggs,1985) demonstrated
in his article the salient features of Sanskrit
language that can make it serve as an Artificial
language. Although computational processing
of Sanskrit language has been reported in the
literature (Huet, 2005) with some computational
toolkits (Huet, 2002), and there is work going
on towards developing mathematical model and
dependency grammar of Sanskrit(Huet, 2006), the
proposed Sanskrit parser is being developed for
using Sanskrit language as Indian networking lan-
guage (INL). The utility of advanced techniques
such as stochastic parsing and machine learning
in designing a Sanskrit parser need to be verified.

We have used deterministic finite automata
for morphological analysis. We have identified
the basic linguistic framework which shall facili-
tate the effective emergence of Sanskrit as INL. To
achieve this goal, a computational grammar has
been developed for the processing of Sanskrit lan-
guage. Sanskrit has a rich system of inflectional
endings (vibhakti). The computational grammar
described here takes the concept of vibhakti and

karaka relations from Panini framework and uses
them to get an efficient parse for Sanskrit Text.
The grammar is written in ’utsarga apavaada’ ap-
proach i.e rules are arranged in several layers each
layer forming the exception of previous one. We
are working towards encoding Paninian grammar
to get a robust analysis of Sanskrit sentence. The
paninian framework has been successfully applied
to Indian languages for dependency grammars
(Sangal, 1993), where constraint based parsing is
used and mapping between karaka and vibhakti
is via a TAM (tense, aspect, modality) tabel. We
have made rules from Panini grammar for the
mapping. Also, finite state automata is used for
the analysis instead of finite state transducers.
The problem is that the Paninian grammar is
generative and it is just not straight forward to
invert the grammar to get a Sanskrit analyzer, i.e.
its difficult to rely just on Panini sutras to build
the analyzer. There will be lot of ambiguities
(due to options given in Panini sutras, as well
as a single word having multiple analysis). We
need therefore a hybrid scheme which should
take some statistical methods for the analysis of
sentence. Probabilistic approach is currently not
integrated within the parser since we don’t have
a Sanskrit corpus to work with, but we hope that
in very near future, we will be able to apply the
statistical methods.

The paper is arranged as follows. Section 2
explains in a nutshell the computational process-
ing of any Sanskrit corpus. We have codified the
Nominal and Verb forms in Sanskrit in a directly
computable form by the computer. Our algorithm
for processing these texts and preparing Sanskrit
lexicon databases are presented in section 3. The
complete parser has been described in section
4. We have discussed here how we are going
to do morphological analysis and hence relation
analysis. Results have been enumerated in section
5. Discussion, conclusions and future work follow
in section 6.

2 A STANDARD METHOD FOR
ANALYZING SANSKRIT TEXT

The basic framework for analyzing the Sanskrit
corpus is discussed in this section. For every
word in a given sentence, machine/computer is
supposed to identify the word in following struc-
ture. < Word >< Base >< Form ><

Relation >.
The structure contains the root word (<Base>)
and its form <attributes of word> and relation
with the verb/action or subject of that sentence.
This analogy is done so as to completely disam-
biguate the meaning of word in the context.

2.1 <Word>

Given a sentence, the parser identifies a singular
word and processes it using the guidelines laid out
in this section. If it is a compound word, then the
compound word with ������ has to be undone. For
example: ��
�������������� � =��
!���"� +�#��������� � .

2.2 <Base>
The base is the original, uninflected form of the
word. Finite verb forms, other simple words and
compound words are each indicated differently.
For Simple words: The computer activates the
DFA on the ISCII code (ISCII,1999) of the San-
skrit text. For compound words: The computer
shows the nesting of internal and external � ��� �
using nested parentheses. Undo �$��%� changes be-
tween the component words.

2.3 <Form>

The <Form> of a word contains the information
regarding declensions for nominals and state for
verbs.

• For undeclined words, just write u in this col-
umn.

• For nouns, write first.m, f or n to indicate the
gender, followed by a number for the case (1
through 7, or 8 for vocative), and s, d or p to
indicate singular, dual or plural.

• For adjectives and pronouns, write first a, fol-
lowed by the indications, as for nouns, of
gender (skipping this for pronouns unmarked
for gender), case and number.

• For verbs, in one column indicate the class
(��&) and voice. Show the class by a num-
ber from 1 to 11. Follow this (in the same
column) by ’1’ for parasmaipada, ’2’ for
ätmanepada and ’3’ for ubhayapada. For fi-
nite verb forms, give the root. Then (in the
same column) show the tense as given in Ta-
ble 3. Then show the inflection in the same
column, if there is one. For finite forms, show

Table 1: Codes for
<Form>

pa/ passive
ca/ causative
de/ desiderative
fr/ frequentative

Table 2: Codes for Fi-
nite Forms, showing the
Person and the Number

1 '�(�*) ��+�,
2 ��- .��/) �0+�,
3 132 �*) ��+�,
s singular
d dual
p plural

Table 3: Codes for
Finite verb Forms,
showing the Tense

pr present
if imperfect
iv imperative
op optative
ao aorist
pe perfect
fu future
f2 second future
be benedictive
co conditional

the person and number with the codes given
in Table 2. For participles, show the case and
number as for nouns.

2.4 <Relation>

The relation between the different words in a
sentence is worked out using the information
obtained from the analysis done using the guide-
lines laid out in the previous subsections. First
write down a period in this column followed by
a number indicating the order of the word in the
sentence. The words in each sentence should
be numbered sequentially, even when a sentence
ends before the end of a text or extends over
more than one text. Then, in the same column,
indicate the kind of connection the word has to
the sentence, using the codes given in table 4.

Then, in the same column, give the number
of the other word in the sentence to which this
word is connected as modifier or otherwise. The
relation set given above is not exhaustive. All the
6 karakas are defined as in relation to the verb.

3 ALGORITHM FOR SANSKRIT
RULEBASE

In the section to follow in this paper, we shall
explain two of the procedures/algorithms that we
have developed for the computational analysis of
Sanskrit. Combined with these algorithms, we

Table 4: Codes for <Relation>

v main verb
vs subordinate verb
s subject(of the sentence or a subordinate clause)
o object(of a verb or preposition)
g destination(gati) of a verb of motion
a Adjective
n Noun modifying another in apposition
d predicate nominative
m other modifier
p Preposition
c Conjunction
u vocative, with no syntactic connection
q quoted sentence or phrase
r definition of a word or phrase(in a commentary)

have arrived at the skeletal base upon which many
different modules for Sanskrit linguistic analysis
such as: relations, �$��%� , � ��� � can be worked
out.

3.1 Sanskrit Rule Database
Every natural language must have a representa-
tion, which is directly computable. To achieve
this we have encoded the grammatical rules
and designed the syntactic structure for both the
nominal and verbal words in Sanskrit. Let us
illustrate this structure for both the nouns and the
verbs with an example each .

Noun:-Any noun has three genders: Mas-
culine,Feminine and Neuter. So also the noun
has three numbers: Singular, Dual and Plural.
Again there exists eight classification in each
number: Nominative, Accusative, Imperative,
Dative, Ablative, Genitive, Locative and Vocative.
Interestingly these express nearly all the relations
between words in a sentence .

In Sanskrit language, every noun is deflected
following a general rule based on the ending al-
phabet such as �#45��67� � � . For example, 68��� is in
class ��45��68� � � which ends with � (a). Such clas-
sifications are given in Table 5. Each of these have
different inflections depending upon which gender
they correspond to. Thus �#45��67� � � has different
masculine and neuter declensions, ����45��68� � � has
masculine and feminine declensions, 9 4$�:67� � � has

masculine, feminine and neuter declensions. We
have then encoded each of the declensions into
ISCII code, so that it can be easily computable
in the computer using the algorithm that we have
developed for the linguistic analysis of any word .

Table 5: attributes of the declension for noun
Class∗ Caseη Genderζ;=<?>A@�>CBED (1) F <?>C@�>CBED (14) <?GH>I (1) J K"LCM�N (1);=>C<?>C@�>CBED (2) O <�>C@�>ABED (15) <?P I (2) Q RTS7LCU�N (2)V"<?>C@�>CBED (3) W <?>C@�>CBED (16) <?@�X (3) W0J KZY [< LCU�N (3)\ <?>C@�>CBED (4) W <?>A@�>CBED (171) [^]`_aF > W (4) Number@bc<�>C@�>ABED (5) J <?>C@�>CBED (18) ; J > F > W (5) d <?eaf W (1)g�<?>A@�>CBED (6) h <�>C@�>ABED (19) [^]ji B O (6) LAk elf W (2)mn<?>C@�>CBED (7) @�<�>C@�>ABED (20) ; LoO <?@�X (7) iapK eaf W (3)d q <?>C@�>CBED (8) ea<?>C@�>CBED (21) [^]`iCr�OsW (8); r <?>C@�>CBED (9) t <?>C@�>CBED (22);"ua<?>A@�>CBED (10) v <?>C@�>CBED (23)f^<?>C@�>CBED (11) [<?>C@�>CBED (24)w=<?>A@�>CBED (12) p <?>C@�>CBED (25)D0<?>C@�>CBED (13)

Let us illustrate this structure for the noun
with an example . For �#4$�:67� � � , masculine,
nominative, singular declension:

This is encoded in the following syntax:
(163{1∗, 1η , 1ζ , 1@}) .

Where 163 is the ISCII code of the declension
(Table 6). The four 1’s in the curly brackets repre-
sent Class, Case, Gender and Number respectively
(Table 5) .

Table 6: Noun example
� Masculine Singular(x 45y?z��)

Endings ISCII Code
Nominative { 163

Pronouns:-According to Paninian grammar
and Kale, (Kale) Sanskrit has 35 pronouns which
are: � y�| , y?} , 13~ , 13~ . , 9 ��6 , 9 �H� ,� � . , � � .��H6 , 9 ��6 , � y���� , � y , � �?� , .�� , .�� ,) ��yT| ,)?6 , ��y�6 ,
 �� & , 1)?6 , � � 6 ,��y , � � ��6 , � .�
 � , x ��
 � , 9 �H
 � , ��
 � � , x 4 ,�� , . ���`��
 , ~ y���� and 45��� .

We have classified each of these pronouns into
9 classes: Personal, Demonstrative, Relative, In-
definitive, Correlative, Reciprocal and Possessive.
Each of these pronouns have different inflectional

forms arising from different declensions of the
masculine and feminine form. We have codified
the pronouns in a form similar to that of nouns .

Adjectives:- Adjectives are dealt in the same
manner as nouns. The repetition of the linguistic
morphology is avoided .

Verbs:- A Verb in a sentence in Sanskrit
expresses an action that is enhanced by a set of
auxiliaries”; these auxiliaries being the nominals
that have been discussed previously .

The meaning of the verb is said to be both
vyapara (action, activity, cause), and phala (fruit,
result, effect). Syntactically, its meaning is in-
variably linked with the meaning of the verb ”to
do”. In our analysis of Verbs, we have found that
they are classified into 11 classes(��& , Table 7).
While coding the endings, each class is subdivided
according to ”9�� � ” knowledge, � � � � , � � � � andy� � � ; each of which is again sub-classified as into 3
sub-classes as ��� � ��� �?)?
 ,)?68��� �?)?
 and13~ .�)�
 ,
which we have denoted as pada. Each verb sub-
class again has 10 lakaaras , which is used to ex-
press the tense of the action. Again, depending
upon the form of the sentence, again a division
of form as 4 2 |`y�����. , 4$�E|jy?����. and ~ ��y�y?����. has
been done. This classification has been referred
to as voice. This structure has been explained in
Table 7.

Table 7: attributes of the declension for verb

Class∗ itγ padaη Tenseζ�jea> LCF�� X (1) [ql� � (1) ;�>A�EP W qaJaF (1) U�� � (1); F > LCF�� X (2) ; LCW0� � (2) J @ Q P � JlF (2) U�N (2)LCF ea> LCF�� X (3) eql� � (3) b h7�8JaF (3) U���� (3)Q ea> LCF�� X (4) U%ra� � (4)D K"F > LCF�� X (5) L e LoO0LCU�N (5)�0�c> LCF�� X (6) ;=> t�S I LCU�N (6)D W > LCF�� X (7) LCU�� � (7)����> LAF�� X (8) U K � � (8)f K @�> LCF�� X (9) U K"N (9)w K p	r � � > LCF�� X (10) U � N (10)<?�j� � ea> LCF�� X (11)
V oiceλ Person@ Numberδ<?G I ea>C� � (1) _�� P J K � v (1) d <?eaf W (1)<�P I ea>C� � (2) P?� � P J K � v (2) LAk elf W (2)h >Ceael>C� � (3) bcG�P J K � v (3) iapK elf W (3)

.
Let us express the structure via an example for��y?�
8��& ,)?67��� �?)�
 , Present Tense, First person,

Singular. This is encoded in the following syntax:
(219(194{1∗ , 1γ , 2η , 1ζ , 1λ, 1@, 1δ})).
Where 219194 is the ISCII code of the endings
(Table 8). The numbers in curly brackets represent
class, ”it”, pada, tense, voice, person and number
respectively (Table 7).

Table 8: Verb example

PRESENT Singular(x 45y?z��)
Endings ISCII Code

First � 219194

Separate database files for nominals and verbs
have been maintained, which can be populated as
more and more Sanskrit corpsuses are mined for
data. The Sanskrit rule base is prepared using the
”Sanskrit Database Maker” developed during this
work.

3.2 Deterministic Finite Automata: Sanskrit
Rule Base

We have used deterministic finite automata (DFA)
(Hopcraft, 2002) to compute the Sanskrit rule
base, which we developed as described in section
III A. Before we explain the DFA, let us define it.
A deterministic finite automaton consists of:

1. A finite set of states, often denoted Q.

2. A finite set of input symbols, often denoted
S.

3. A transition function that takes as arguments
a state and input symbol and returns a state,
often commonly denoted d.

4. A start state, one of the states in Q, denoted
q0.

5. A set of final or accepting states F. The set
F is a subset of Q.

Thus, we can define a DFA in this ”five-tuple”
notation: A = (Q,S, d, q0, F). With this short
discussion of the DFA, we shall proceed to the
DFA structure for our Sanskrit Rule Base. Since
we are representing any word by ISCII codes that
range from 161 to 234, we have effectively 74 in-
put states. In the notation given below, we are rep-
resenting the character set by {C0, C1, . . . , C73},
where Ci is the character corresponding to the

ISCII code 161 + i. Thus, if we define a DFA =
M(Q,S, d, q0, F) for our Sanskrit Rule Database,
each of the DFA entities are as follows:

• Q = {q0, qC0, qC1, . . . , qC73}×{0, 1}. 0 rep-
resents that the state is not a final state and 1
tells that the state is a final state.

•
∑

= {C0, C1, . . . , C73}

• δ((qx, a), Y) = δ(qY , a)or δ(qY , b) a,b
ε{0, 1}

• q0 =< q0, 0 >

• F ⊂ {qC0, qC1, . . . , qC73} × {1}

In this work, we have made our DFA in a matrix
form with each row representing the behavior of
a particular state. In a given row, there are 74
columns and entries in a particular column of the
corresponding row store the state we will finally
move to on receiving the particular input corre-
sponding to the column. In addition, each row
carries the information whether or not it is a final
state.
For example: D[32][5] = 36 conveys that in the
DFA matrix D[i][j], in 32nd state, if input is C5,
we will move to state no. 36 .(To be noted: C5
is the character corresponding to the ISCII code
166.).

In the graph below, we are giving an example
how the DFA will look as a tree structure. The
particular graph is constructed for the verb declen-
sions for the class ��y��
 ��& . The pada is)�67��� �?)?

and the tense is present tense. The search in this
DFA will be as follows:- If the first ending of the
input corresponds to one of the state 163, 195 or
219, we will move ahead in the DFA otherwise
the input is not found in this tree. On getting a
match, the search will continue in the matched
branch. .

In general, the search in the DFA is done as fol-
lows (We take the example of searching for ~ y (¡{
in the DFA tree constructed above:-

• Firstly, an input word is given as the input to
the user interface in Devanagari format .

• The word is changed to its equivalent ISCII
code (203212195163 in this case).

• The automaton reads the forms in the reverse
order to lemmatize them. In our DFA, we

START

163

219

195

163212 163212218

163204 163204218

195

194

219215

219204

219204218

219194

219194232

219194232198

FINAL

219

163

195

212

215

204

194

218

218

232 198232

218

204

195
194

218

Figure 1: DFA tree obtained for ��y��
 ��&)?68��� �?)?
 present tense.

give one by one the last three digits of the
ISCII code till the matching is there.

– Start state: 000
– input to DFA: 163, i.e character C2.
– In the DFA matrix we will check the en-

try D[0][2]. If it is zero, no match is
there for this entry and hence no match
either for the word. Else we will move
to the state specified by the entry.

– In this case, we get the entry corre-
sponding to state ”163”. That means it
is either an intermediate state or a final
state. From the graph, it is visible that
the tree accepts 163 just after the start
state. Also, it is not a final state. Now
we will have 195 (i.e. C34) as next input
and 34th column of the row correspond-
ing to state 232 will be checked and the
search continues till no match.

– Final match will be 163195.

• The final match will be checked for being eli-
gible for a final state which is true in this case.

We can verify it from the graph given.

• Remaining part of the word is sent to
database engine of program to verify and to
get attributes. The word corresponding to the
stem, Devanagari equivalent of 203212, that
is ~ y) will be sent to database.

• If both criteria are fulfilled (final state match
and stem match through database), we will
get the root word and its category (verb in
this case). The attributes such as tense, form,
voice, class, pada, person, number are coded
in the final state itself according to the nota-
tions given in table 5 and 7. All the possible
attributes are stored and it is left up to the fi-
nal algorithm to come up with the most ap-
propriate solution.

Let me just explain how we have obtained the
deterministic finite automata. Clearly, the states
are obtained via input symbols. Ambiguity re-
mains in {0, 1}. If the state is not a final state at
all, it is declared as intermediate state without any
ambiguity to be considered for non-deterministic.
When the state is a final state, for example con-
sider ����� � and � ���`. � . When we encounter � in ����� � , we get the root as ����� . (Of course,
we have to add the ¢^£n� � and go through � � � y?��
��¤
getting ���"� as root verb.) But in � ���`. � , � is
not a final state. It seems at this point that we could
have obtained a non-deterministic finite automa-
ton. We have resolved the problem by accepting
the following facts:

1. Final state can be intermediate state too but
not the other way round.

2. Our algorithm doesn’t stop just as it gets to
a final state, it goes to the highest possible
match, checks it for being final state and, in
case it isn’t, it backtracks and stops at the op-
timal match which satisfies the two criteria
as told in the algorithm (final state match and
stem match through database).

There might be another ambiguity too, for exam-
ple, in 67��������.����"� , �#����.������ is a final state but it
refers to 4567& , ��¥�'
8��� , and �#)?��
 ��� karaka. This
seems to be non-deterministic. We have avoided
this problem by suitably defining the states. Fi-
nal state represents all possibilities merged in a
single state. It is up to the algorithm to come up
with the unique solution. There could be situation

where longest match is not the right assignment.
To deal with this, all other possible solutions are
also stacked and are substituted (if needed) when
we go for relation analysis. For example, let us
take the word � ������.��:�"� . We assume that � ��� ,� ��� :~ and � ������.�� are valid root words. Our al-
gorithm will choose � �H� as root word along with
the attributes (3 possibilities here). But the other
solutions are also stacked in decreasing order of
the match found. It is discussed in the relation
analysis, how we deal with this situation.

4 ALGORITHM FOR SANSKRIT
PARSER

The parser takes as input a Sanskrit sentence and
using the Sanskrit Rule base from the DFA Ana-
lyzer, analyzes each word of the sentence and re-
turns the base form of each word along with their
attributes. This information is analyzed to get re-
lations among the words in the sentence using If-
Then rules and then output a complete dependency
parse. The parser incorporates Panini framework
of dependency structure. Due to rich case endings
of Sanskrit words, we are using morphological an-
alyzer. To demonstrate the Morphological Ana-
lyzer that we have designed for subsequent San-
skrit sentence parsing, the following resources are
built:

• Nominals rule database (contains entries for
nouns and pronouns declensions)

• Verb rule database (contains entries for 10
classes of verbs)

• Particle database (contains word entries)

Now using these resources, the morphological
analyzer, which parses the complete sentences of
the text is designed.

4.1 Morphological Analysis
In this step, the Sanskrit sentence is taken as in-
put in Devanagari format and converted into ISCII
format. Each word is then analyzed using the DFA
Tree that is returned by the above block. Follow-
ing along any path from start to final of this DFA
tree returns us the root word of the word that we
wish to analyze, along with its attributes. While
evaluating the Sanskrit words in the sentence, we
have followed these steps for computation:

1. First, a left-right parsing to separate out the
words in the sentence is done.

2. Second, each word is checked against the
Sanskrit rules base represented by the DFA
trees in the following precedence order: Each
word is checked first against the avavya
database, next in pronoun, then verb and
lastly in the noun tree.

The reason for such a precedence ordering is pri-
marily due to the fact that avavya and pronouns

are limited in number compared to the verbs, and
verbs are in-turn limited compared to the infinite
number of nouns that exist in Sanskrit.

4.1.1 Sandhi Module
In the analysis, we have done, the main prob-

lem was with words having external sandhi. Un-
less we are able to decompose the word into its
constituents, we are unable to get the morph of the
word. So, a rulebase sandhi analyzer is developed
which works on the following principles.

• Given an input word, it checks at each junc-
tion for the possibility of sandhi.

• If it finds the junction, it breaks the word into
possible parts and sends the first part in the
DFA.

– If it finds a match, it sends the second
part in DFA.
∗ If no match, it recursively calls the

sandhi module (For the possibility of
multiple sandhi in a single word).

∗ If match is found, terminates and re-
turns the words.

– If no match, it goes to the next junction.

The rules for decomposing the words are taken
from Panini grammar. The search proceeds en-
tirely backwards on the syllabic string. Emphasis
is given on minimum possible breaks of the string,
avoiding overgeneration.
Panini grammar has separate sections for vowel
sandhi as well as consonant sandhi. Also, there
is specification of visarga sandhi. Below, we are
describing the simplified rules for undoing sandhi.

Vowel Sandhi:- We have considered
���¦E|
��§	�� , y!¨ �©*��§	�� , � �0& ��§ª�� , .�& ��§	�� and �#.��
��§	�� in vowels. ()?67«¬) ,) �yT|`«¬) and ' 4 ® � ~ �:y
are not taken into account yet.)

1.
���¦E| �¯§	�� :- If the junction is the ����°�� corre-
sponding to ��� , ± , ² or ³ , it is a candidate

for
���¦E| ��§ª�� . The algorithm for an example
word ~ ���!�
8. is explained.

• We assume that we don’t get any match
at the junction �#� after ~ .

• The junction ² is a candidate for
���¦E|
��§ª�� . So the following breaks are made:
1. ~ ��� � + 1
8. , 2. ~ ��� � + ²
8. , 3.~ �:�Z� +1
 . , 4. ~ �:�Z� + ²
 . . For each
break, the left hand word is first sent to
DFA and only if it is a valid word, right
word will be sent. In this case, first so-
lution comes to be the correct one.

2. y!¨ �©´��§	�� :- In this case, the junction is x � , ��µ .
The corresponding break-ups are:

• x � :- (� or ���) + (x or x �).
•

�0µ :- (� or ���) + (��¶ or ��µ).

The algorithm remains the same as told in
previous case.

3. � ��& ��§ª�� :- In this case, the junction isx , �0¶ , �#6o� , � £ � . The corresponding break-
ups are:

• x :- (� or ���) + (9 or ±).
•

�0¶ :- (� or ���) + (1 or ²).
•

��6o� :- (� or ���) + (· or ³).
•

� £ � :- (� or ���) + (̧ or ¹).

The algorithm follows the same guidelines.

4. .�& �¯§	�� :- In this case, the junction is a ha-
lanta followed by . , y , 6 , £ . The corre-
sponding break-ups are:

• halanta + . :- (9 or ±) + � .
• halanta + y :- (1 or ²) + � .
• halanta + 6 :- (̧ or ¹) + � .
• halanta + £ :- (· or ³) + � .

The algorithm follows the same guidelines.

5. �#.��
 ��§	�� :- In this case, the junction is�#.�� , �#��.�� , �#yj� , �#��yj� followed by any
vowel. The corresponding break-ups are:

•
��.�� + vowel:- x + vowel. (same vowel
is retained.)

•
����."� + vowel:- x � + vowel.

•
��yj� + vowel:- �0¶ + vowel.

•
����yj� + vowel:- �0µ + vowel.

The algorithm follows the same guidelines.

Consonant Sandhi:- For dealing with consonant
sandhi, we have defined some groups taking clue
from panini grammar such as 4 � , z � , �� , � � ,) �
each of which have 5 consonants which are similar
in the sense of place of pronunciation. Also, there
is a specific significance of first, second, third etc.
letter of a specific string. The following ruleset is
made:

• Define string s1, with first five entries of ��
and 6th entry as , . Also, define s2, with first
five entries of � � and 6th entry as � . The rule
says,
The junction is a + halanta + c, and the
breakup will be b + halanta and c, where
a, c ε s1, b ε s2 and the position of a and b are
same in the respective strings.
For example, in the word 68�����`,?º { , the junc-
tion is , + halanta + , . The break-up will
be, � +halanta and , . Hence we get 68��� � � +,�º { .

• Define string s1, with first five entries of z»�
and 6th entry as ¤ . Also, define s2, with first
five entries of � � and 6th entry as � . The rule
says,
The junction is a + halanta + c, and the
breakup will be b + halanta and c, where
a, c ε s1, b ε s2 and the position of a and b are
same in the respective strings.
For example, in the word ��¼¾½ � , the junction
is ½ + halanta + ½ . ½ is the third character
of string s1. The break-up will be,
 +halanta
and ½ . Hence we get �
 � + ½ � .

• We have defined strings as ¦¶?, and �#¦¶?,
with �#¦�¶�, containing first two characters of
all the five strings 4 � , z � , �� , � � ,) � as well
as ¤ , , , � . ¦¶?, contains all other conso-
nants and all the vowels. The rule says, if we
get a junction with a + halanta + c, where
a,c ε

¦¶?, , a will be changed to corresponding�#¦¶?, while undoing the sandhi. Similarly,
other rules are made.

• The vowels are categorized into ¿ ��y and
���¦E|
categories. ¿ ��y contains � , 9 , 1 , ·
and
���¦E| contains ��� , ± , ² , ³ . If the
junction is a + � + halanta + � , where a ε¿ ��y , the break-up will be: a + � + halanta
and φ, where φ denotes null, i.e. other � is
removed. For example, � ����À�67Á�. � breaks up
into � ����� � and ��68Á�. � .

Visarga Sandhi:- We have looked at visarga
sandhi in a single word. The rules made are as
follows:

• The junction is ¤ + halanta + a ε
z»� . The

break-up will be { and a.

• The junction is , + halanta + a ε �� . The
break-up will be { and a.

• The junction is � + halanta + a ε
� � . The

break-up will be { and a.

• The junction is 6 + halanta + a ε consonant.
The break-up will be { and a.

• The junction is 6 + halanta + a ε vowel. The
break-up will be { and a.

4.2 Relation Analysis
With the root words and the attributes for each
word in hand for the previous step, we shall
now endeavor to compute the relations among the
words in the sentence. Using these relation values
we can determine the structure of each of the sen-
tences and thus derive the semantic net, which is
the ultimate representation of the meaning of the
sentence.
For computing the relations, we have employed
a case-based approach i.e., nominals were classi-
fied as subject, object, instrument, recipient (ben-
eficiary), point of separation (apaadaana) and lo-
cation, to the verb based on the value of the case
attribute of the word, as explained under noun ex-
ample in Section 3.1.

The Sanskrit language has a dependency gram-
mar. Hence the karaka based approach is used to
obtain a dependency parse tree. There are reasons
for going for dependency parse:

1. Sanskrit is free phrase order language.
Hence, we need the same parse for a sentence
irrespective of phrase order.

2. Once the karaka relations are obtained, it is
very easy to get the actual thematic roles of
the words in the sentence.

The problem comes when we have many possi-
ble karakas for a given word. We need to disam-
biguate between them. We have developed some
If-Then rules for classifying the nouns, pronouns,
verb, sub-verbs and adjectives in the sentence. The
rules are as follows: First we are looking at the
sentences having at least one main verb. Nominal

sentences are to be dealt in the similar manner but
the description will be given later.

1. If there is a single verb in the sentence, de-
clare it as the main verb.

2. If there are more than one verb,

(a) The verbs having suffix Â � , Ã .�)�� ,� ��� �0��� are declared subverbs of the near-
est verb in the sentence having no such
affix.

(b) All other verbs are main verbs of the
sentence and relations for all other
words are given in regard to the first
main verb.

3. For the nouns and pronouns, one state may
have many possibilities of the cases. These
ambiguities are to be resolved. The hand
written rules for determining these ambigu-
ities are as follows (Rules are written for
nouns. Adjective precede nouns (May not
precede too due to free word order nature.)
and hence get the same case as nouns. For
pronouns, rules are same as that for nouns.):

(a) Nominative case: The assumption is that
there is only one main subject in an ac-
tive voice sentence. We proceed as fol-
lows:
• All the nouns having nominal case

as one of the attributes are listed.
(For example, Ä¡£ �"� has both pos-
sibilities of being nominative or ac-
cusative case.)

• All those connected by z are
grouped together and others are kept
separate. We now match each group
along the following lines:
– The number matches with that of

the verb(Singular/dual/plural).
– The root word matches with the

person of the verb(i.e root word
”�#����
 � ” for 3rd person, ”. ���j��
 � ”
for 2nd person).

If ambiguity still remains, the one
having masculine/feminine as gen-
der is preferred for being in 4$���|
karaka and declared as subject of the
main verb.

In passive voice,

• Nominative case is related to main
verb as an object. After grouping
and going through the match, the
noun is declared as object of main
verb.

(b) Accusative case: Assuming that the dis-
ambiguation for nominative case works
well, there is no disambiguation left for
this case. All those left with accusative
case indeed belong to that. The noun is
declared as object to nearest sub-verb or
main verb.

(c) Instrumental case: If the sentence is in
passive voice, the noun is declared as
subject of the main verb.
For active voice, ambiguity remains if
the number is dual. The folowing rules
are used:
• We seek if the indeclinable such as��¢ , � ��45��� , � � � |`�"� , � ����� follow the

noun. In that case, noun is declared
as instrument.

• If the noun is preceded by time or
distance measure or is itself one of
these, it is declared as instrument.
For example � ����.����"�
8������.����������6A¶�� {Å½ ��� { , here � ����.����"� is the
disambiguating feature.

• If Æ?�� 6 { , 4$�:& { are following noun,
the noun is declared as instrumental.

(d) Dative case: For dative case, disam-
biguity is with respect to ablative case
in terms of dual and plural nnumbers
The disambiguating feature used here is
main verb. That is, there are certain
verbs which prefer dative case and cer-
tain verbs prefer ablative. For example:
• The verbs preferring dative case areÇ � � � ,
 È � ¢ � , ± �j.��| , � � �.�� , ��)!® ¢ � etc.
• The verbs preferring ablative case

are ½ ��� �0É � � , y�67��� , ' ����
 , y?��6 etc.
Initially, we have populated the list us-
ing �#Ê���- .���.`� knowledge as well as
some grammar books but this has to be
done statistically using corpus analysis.

(e) Ablative case: The ambiguity here is for
certain nouns with the genitive case in
singular person. The ambiguity resolu-
tion proceeds along the following lines:
• If the noun having ambiguity has

a verb next to it, it will be taken

as ablative (Noun with genitive case
marker is not followed by a verb.)

• If suffixes �H68)j� , ����)j� are used in the
sentence, the noun is declared as ab-
lative.

• If � � Ã . , �
 ® ¤ are following the
noun, it is declared as genitive.

• Finally, we look for the disam-
biguating verbs as done in previous
case.

(f) Genitive case: The ambiguity is there in
dual with respec to locative case. We
have used that by default, it will be
genitive since we have not encountered
any noun with locative case and dual in
number.

(g) Locative case: The ambiguities are al-
ready resolved.

Only problematic case will be the situation
discussed in section 3.2 with the example of� �H�:��.������ . If the algorithm is able to generate a
parse taking the longest possible match, we will
not go into stacked possibilities, but if the subject
disagrres with the verb (blocking), or some other
mismatch is found, we will have to go for stacked
possibilities.
Thus, we have got the case markings. Relation for
nominative and accusative case markings have al-
ready been defined. For other case markings,

• Instrumental: related as an instrument to
main verb in certain cases (taken from�#Ê��Ë- .���.`�).

• Dative: related as recipient to main verb in
certain cases, but also denotes the purpose.

• Ablative: related as separation point.

• Genitive: this is not considered as karaka
since karaka has been defined as one which
takes role in getting the action done. Hence it
is related to the word following it.

• Locative: related as location to the main verb.

Still, we have not given any relation to adjectives
and adverbs. For each adjective, we track the
noun it belongs to and give it the same attributes.
It is defined as adjective to the noun. The adverbs
are related to the verb it belongs as adverb.

Based on these relations, we can obtain a se-
mantic net for the sentence with verb as the root
node and the links between all the nodes are
made corresponding to relations with the verb and
interrelations obtained.
Sanskrit has a large number of sentences which
are said to be nominal sentences, i.e. they don’t
take a verb. In Sanskrit, every simple sentence has
a subject and a predicate. If the predicate is not a
finite verb form, but a substantive agreeing with
the subject, the sentence is a nominal sentence. In
that case, the analysis that we have done above
seems not to be used as it is. But in Sanskrit,
there is a notion called ��� � �?) , that is, if one of the
verb or subject is present, other is obtained to a
certain degree of definiteness. Take for example,
the sentence � ¢ �"�Ì4 £ � �?� �£nÍ � �ÏÎ. If instead
of saying the full sentence, I say � ¢ ���Ð4 £ � �?� ,�£¡Í � � is determined as verb. Similarly, if I say4 £ � ��� �£¡Í � � , the subject � ¢ �"� is determined.� ¢ ��� is a kind of appositive expression to the
inflectional ending of the verb �£nÍ � � . We
have used this concept for analyzing the nominal
sentences. That is, verb is determined from the
subject. Mostly, the forms of � � � only are used
and relations are defined with respect to that.
Although, the analysis done is not exhaustive,
some ruleset is built to deal with them. Most
of the times, relations in a nominal sentence are
indicated by pronouns, adjectives, genitive. For
example, in the sentence �Ñ{Ò� � �
86 {ÒÆ � £ 4 { ,
there is �#� � �?) of the verb � ��� in the sentence
by the subject Æ � £ 4 { . Hence Æ � £ 4 { is related
to the verb as subject. �Ì{ is a pronoun referring
to Æ � £ 4 { and � � �
 6 { is an adjective referring
to Æ � £ 4 { . Similarly, 9
 �"�Ó����.Ô��® ¢ ����Î. In this
sentence, 9
8�"� is a pronoun referring to �E® ¢ ��� and����. is a genitive to �o® ¢ ��� . Here again, there will
be ��� � ��) of the verb � ��� and �o® ¢ ��� will be
related to the verb as subject.

5 RESULTS
5.1 Databases Developed
The following Sanskrit Rule Databases have been
developed during the project:-

• Nominals (¤¡Õ`
 «¬)) rule database contains
entries for nouns and pronouns declensions
along with their attributes.

• Verb (� ��� �0«¬)) rule database contains entries
for 10 classes of verb along with their tenses.

• Particle (�#Öj.�.) database.

Along with these databases, we have developed
some user interfaces (GUI) to extract information
from them. For example, if we want to get the
forms of a particular verb in a particular tense, we
can just open this GUI and give also obtained. the
root word and tense information.

5.2 Parser Outputs
Currently, our parser is giving an efficient and ac-
curate parse of Sanskrit text. Samples of four of
the paragraphs which have correctly been parsed
are given below along with snapshot of one sen-
tences per paragraph.�#� �����	�?
 1:-) � ¼ .�� { � �0+�z$67&�� { 67��&:��. �×� �0+�4� £ �' �:� {� ��.�� �?� ��� - .������ 1)?����.Ø� � � � y?� {� ¤¡�`.������
�$¥ .�4o�Ù�Ú- .���)�. �� �ÛÎ¯� �0+�4� £ �Ü�#��?4 �?�j� ¢ 67� {���:� �ÝÎ4 �?z�� Æ � £ � { ÎÚ4 �?z$� ' µ?Þ^� { ÎÚ� ��+Hz$67&�� {Ñ' µ?Þ^��������:°H�:���$)���ß�. �� �ÝÎ ' µ?Þ^� {5Æ � £ �����5)?��ß�. :� �ÝÎ � y��|y�?
 � � °������ y�¤!� © «¬)�?& 13à �:67. �� �ÝÎá� �0+�z�68&�� { ¤¡�`.������ây��
8��.ã� (|`���ä�) Æ ¶ � . �� �ÝÎ '? �
8�����
' �:� {å� ��.���� � y��| ¤n�j.�� { .�æ����ç�)è4�éyT| :� �ÝÎ� �êy?�����ë� � y?� �� � �¡{ �#����. :� �ÝÎÏ�� ��.�� �?�Öj.��:.��������?4�éy�| �� �ÝÎ x � � ¤n�j.�� {^x y � �E|`��.ì6 � &����4 67�j. �� �ÝÎ.

Figure 2: Parser output for)Z� ¼ .�� { � �0+�z�68&�� {68��&`��. �Ò� �0+�4� £ � ' ��� {í ��.�� �?� �$� - .������ 1)?�:��.� � � � y?� {5 ¤¡�`.������ �$¥ .�4o�ë�î- .���)?. �� �ÝÎ
�#� �����	��
 2:- ��� ��® ¢� x 45��� 1)?y?�����ïy?�C|j� �åÎ

1)?y?����. � �`��)� x 4$�ð��¶?¤¡� £ �ðy?�C|j� �åÎ � ¢ ���
'? �
8����� ' ��� {�� �.�¶�|!
 .������Ù) �y�|j���Ù¤nñ�.������ � . Â �¤òµ?z��
845��� y � ��. ��¶�¤n� £ �����å�����í� �ÏÎó��°���Ô�µ { ������� ' ��� � � �åÎô���õ��¶ { �H�:� � y £ �� ���ÛÎ � y £ �:.�� { y � � ��.�� { �����ó�µ?6Z�õ� ���ÛÎ� ¢ ��� � y £ �:��� '� ¥ &�����)!®�¤¡� �ÏÎ�����.�� {5� ��öî�:.������

45Á�÷ � . �åÎ � � '?� À$� ~ y �ÝÎ���µ�6Z�����é�)Û4567����.������
��§ y�� ¢ .�� �øÎ � �)?ùä��� �ú��¶?¤¡� £ �:���û��� ½ |j.�� �øÎ�¶?��.���� , ~ �0ü¡��y ¤¡Ê�� �Ô�ª®Ë&�� �õz ��67��.�� �øÎ��� { ��� � y £ ��. � � �0��y?��
 � �Ô4�¶?� £ � �ý�ª®Ë&�� �

�åÎõ�#� � ��67���Å��µ�6Z�����ï� �0þ$� �ÏÎ � �Ïÿ ��� ���y?���:�H68��� � y £ ����� � .�� �åÎ � y £ ��.�� { ²������ ��68���ä�#y?��6 �ÝÎc� �)?ùä�:��� � ¢ ��� � y £ �:���é
� � � ���
� ¢�ïÎ x �����Ð��� � � .�4$�E| { Îï��¶ � �?y?��45� £ � � ¢ ����¶?� :¢ � '? �H)���
845����� y�?
 � � °���� �ê� �
8���ê� �
 ���� � �068��y?6�?& 13à ��67.�� �ÏÎ.

Figure 3: Parser output for � ¢ ��� '? �
 �H��� ' �:� {� ��.¶�|!
 .��:���¡) �y�|j���n¤¡ñ�.������ � . Â ��¤òµ?z��
845��� y��� ��.*�¶?¤n� £ �����é������� �ÏÎ
�#� �����	�?
 3:- ��� ��® ¢� x 45��� 1)?y?�����åy��C|`� �åÎ

1)?y?����� y?¤¡� £ ���ê� ���ÝÎ � ����� � 1)�y?��������� Än£ y!® � � {Ð�$�� �ÝÎ Æ?¢ y {) ���j)?��67y { �)y?�C| � � �åÎ��#���4$� {¡£ ��� { �) y�� � � �ïÎ�����. ��y��|
 4y?����)?��. { �) ��:� �ÝÎ�� ¢ ��� '? �
 �H��� � ��. § 4$� £ �1 ������4$�E|ï4�éy��|�Î � ¢ ��� ¢ � ��4567� &ó�ª®Ë&�� � ���67�:4$6 ¶ �ÏÎ�� ¢ ��� y?� 68&�� � y?�|j��� y��H��)?������� �� �þ�� �øÎ � ��. § 45� £ � 1)?y?� � ���)?�	®�z$67&�� {5~ � � �� �ÛÎ� � {#� ��45��� ��� ~ � ���ª® ½ � { �) ~ � � �� �ÝÎ�45
8� z�����µ?6Z� �)è��° ���:.�� �ÛÎ �Ñ{ï9 ������� { y�?� �?�
� ��y �ÝÎc¤¡� �8£ � ¢^ 68���ª®�&�� � z$6 �ÝÎ���.	��68� { �)��° �#��� � . �ª® � . �� �ÝÎ��� � � ��67���Ñ- y �H���î4�âyT|j� �åÎy!® � �?, � y�����67� { Ç���÷ �� �ÝÎ y y � � {) �� & { y!® � �?, �4 � ½Ù:� �ÝÎ¯���û�����ª®Ëz�68&�� {�� y��|!��. { 6 ¶ �� 45� Í Á�÷�� �� � � .�4$&������Ýz y?��6 :� �ÝÎ 9
8���Ý
 ®	� .����ø� ��#��� �
 '
8��� ~ y �ÝÎ�#� �����	�?
 4:- ���
�?¤n��. ����� ~ ��68��y?,�|j����Î8���
��¤ � y�?
8�:�H�:�����Ú- .�.������ ~ y �ÝÎ�y�?
�?, � ' � &����������� �0�j.���&��:þ ½ ��y?����. �#��y � .�45� {3 �H.���� { y &E|`��� {��:� �ÝÎ y�?
�?, � � � .���� {ë· ��y�?
 { Î · ��y�?
� x 4$���y?��
ï���Ðy?�C|j� � ,”¢� ������y ! � y?�"� 4 ® ,?��� �#y � .����4 �é+ÛÎ” ��¥) �& ��| ½ � � ½Ù� �Z��������� ½ ��y?��� � ��6 {�#À�� ��yåÎ�#À�þ 4 ® ,���� y?���í��?y �$¥�~ y �ÝÎ¬�#� {~ ��67����.�� { ���:z���.��| {�� y��|�,?����� ½ ��y?���������?4 Ã .���&���.4 ® ,?45�E| ¤ � &��:. Æ�¢� y � ����� 1)?��.������â� ¤ � . � �ÛÎ

Figure 4: Parser output for ���ï�����A®Ëz�67&�� { � y��|!��. {6 ¶ �� 45� ÍÙ� ÷�� � � � � .�45&�������z y?��6 �� �

� �?, � '�� ��� {Ù1)?��. { ��¶�y § ¤ � ��y?��Î0�¶ { y § ¤ � � �?��y { ,Æ?£ ��y?
 �| { y!®Ë, ~ � { , y � � � { , y!® © � {Ý����Hy {Ï� y��|�¶?y § ¤ ½ � { � � � ~ |jy �� �ÝÎ ~ �� � {�Æ?£ y � |j�H�:.ð�¶?�	��°�����¶?��.���� zõ� � . � ����� 1)?4 �é«¬� { Î Æ�£
 � {î~ � �����4 ,T|`� ����� 1)?. � ¼ . � � �åÎ0¤n��.��:�H�:���$��.��H�:�H.�������.�������¶?��. ½�� . 1 y�|j6745��&������ 9 ��68)?
8� (�|`������� 9 �����H� {' �:)?&��:. ¤n4 � ��������� ' .�¶�� { �#��y � .�4 { Îc¤¡4 � ��ùy!®�, ~ �?6��y 1��� � �åÎò�#� { �¶?y § ¤¡��.ú4 ®¾,�?ù×� y?���	���45ùä�ã�#) �yT| {¡�$¥�Æ?�%�¡{ y��C|`� �åÎ��#� x yú�¶ {¡1)?���
 ��� �����Ì� ¤�
ï��åÎ ~ ��� � { x 45���Ú�����è�µ {Ì9�� .) y��Ù��åÎ ��§ ��4 ®¾� �Ò��µ {Ñ9� �)?
���á��°�� �µ) ���éy�ù
13~ ��y)´��® � � �åÎ¯4 ® ,�y � |`����.Û¤¡��.�����¤n45���������^4����
� ��������������¤n� (|`���Ó4 �?z$�ê¦�����4$
 È�Ö`.���������� ' .�¶������4 �éy�|j� �åÎ � ����y�?
 ��. '�(� � �#� z�|j4 � 4 ® , y?,?. �� ¥�~ ��67��z$z��| ' �:É`.���ïÎ5��������4$����� ��67y { � ¢ ,�|j. {�$¥) �&E| ½ ��� { 4 Ã .���&���. 4 ® , y�������� �$¥ .�4o�
' z$��67.�����Î 4 ® ,�4$�E|j& � ½ ������� '� 67��y � � { Îåy�?
��, �
~ � � { ������� 9� �ó4�� .�� �åÎð. (�ï������� �����������)?� £ . �Ò� (�)Z®�� y	� � y��|j��� ½ ��y������Ì�#À �?� Än£ � {������� y �)?
 � (�j| {)?� £ . �ÝÎ . � ° � { , � � £ � ��� � �?� ,6 � ��.���
 È Öj. � { 4 � � ����¤n4 � { z .�� 4 ® , Ç#.�� �� �?� � y��|�,?����� ½ ��y?���������Ì����¤ x y ~ y �ÝÎÐ�#��?�45�E|`&�� � y��|!,?�:��� ' � &��������=��� ���`.���&���þ � ¢ ��� ¢ � �½ ��.���ïÎ .

Figure 5: Parser output for y�?
�?, � ' � &����������� ���`.���&���þ ½ ��y?����. �#��y � .�45� {^ ��.���� { y &E|`��� {�$�� �ÝÎ

The parse results pave the way for represent-

ing the sentence in the form of a Semantic Net.
We here give the semantic net for the parse output
given in Figure 2.The Semantic Net is shown in
Figure 6.

; � � > Ja�8L BED

� K �sf^@�X7>��

J ����� >��
LCt��A� > W �

P q0O > L e W �

� K �0< K U q

@�P7X S¾� q

b J > Q��

_ >CD��

LAWs� P qaW

[Bj� � >CP �
[^]j� < �

subject

adjective

object

adjective

location

adjective

vs

adverb

adverb

object
adverb

Figure 6: Semantic net representation of the sen-
tence [) � ¼ .�� { � ��+�z�67&�� { 67��&:��. � � ��+H4� £ � ' �:� { ��.�� �?� ��� - .������ 1)�����. � � � � y?� { ¤¡�`.������
��¥ .�4o� �Ú- .��:)?. :� �ÝÎ]

6 CONCLUSIONS AND FUTURE
WORK

Our parser has three parts. First part takes care of
the morphology. For each word in the input sen-
tence, a dictionary or a lexicon is to be looked up,
and associated grammatical inforation is retrieved.
One of the criterion to judge a morphological
analyzer is its speed. We have made a linguistic
generalization and declensions are given the form
of DFA, thereby increasing the speed of parser.
Second part of the parser deals with making
”Local Word Groups”. As noted by Patanjali,
any practical and comprehensive grammar should
be written in ’utsarga apavaada’ approach. In
this approach rules are arranged in several layers
each forming an exception of the previous layer.
We have used the ’utsarga apavaada’ approach
such that conflicts are potentially taken care
of by declaring exceptions. Finally, words are
grouped together yielding a complete parse. The
significant aspect of our approach is that we do
not try to get the full semantics immediately,
rather it is extracted in stages depending on when
it is most appropriate to do so. The results we
have got are quite encouraging and we hope to
analyze any Sanskrit text unambiguously.

To this end, we have successfully demonstrated
the parsing of a Sanskrit Corpus employing
techniques designed and developed in section 2
and 3. Our analysis of the Sanskrit sentences in
the form of morphological analysis and relation
analysis is based on sentences as shown in the four
paragraphs in previous section. The algorithm for
analyzing compound words is tested separately.
Hence future works in this direction include
parsing of compound sentences and incorporating
Stochastic parsing. We need to take into account
the ����� � ��� � as well. We are trying to come up
with a good enough lexicon so that we can work
in the direction of � ��� � y?���	�?
 in Sanskrit
sentences. Also, we are working on giving all
the rules of Panini the shape of multiple layers.
In fact, many of the rules are unimplementable
because they deal with intentions, desires etc.
For that, we need to build an ontology schema.
The Sandhi analysis is not complete and some
exceptional rules are not coded. Also, not all the
derivational morphology is taken care of. We
have left out many '?� .�. . Reason behind not
incorporating the '?� .�. was that it is difficult
to come up with a general DFA tree for any of
the '?� .�. because of the wide number of rules
applicable. For that, we need to encode the Panini
grammar first.

Acknowledgment
We humbly acknowledge our gratitude to revered
Aacharya Sanskritananda Hari, founder and direc-
tor of Kaushalya pitham Gurukulam, Vadodara for
educating us in all aspects of Sanskrit language.

References
Blai Bonet and Hctor Geffner 2001. Planning as

heuristic search. Artificial Intelligence 129.

Ferro, M.V., Souto, D.C., Pardo, M.A.A.. 1998. Dy-
namic programming as frame for efficient parsing.
Computer science, 1998.

Ivanov, Y.A., Bobick, A.F. 2000. Recognition of vi-
sual activities and interactions by stochastic pars-
ing. Volume 22, Issue 8, Aug. 2000 Page(s):852
- 872. IEEE Transactions on Pattern Analysis and
Machine Intelligence.

Briggs, Rick. 1985. Knowledge Representation in
Sanskrit and artificial Intelligence, pp 33-39. The
AI Magazine.

G. Huet. 2002. The Zen Computational Linguistics
Toolkit. ESSLLI 2002 Lectures, Trento, Italy.

G. Huet. 2005. A Functional Toolkit for Morphologi-
cal and Phonological Processing, Application to a
Sanskrit Tagger. Journal of Functional Program-
ming 15 (4) pp. 573–614.

G. Huet. 2006. Shallow syntax analysis in Sanskrit
guided by semantic nets constraints. International
Workshop on Research Issues in Digital Libraries,
Kolkata. Proceedings to appear as Springer-Verlag
LNCS, 2007.

Bureau of Indian Standards. 1999. ISCII: Indian
Script Code for Information Interchange. ISCII-91.

Akshar Bharati and Rajeev Sangal. 1993. Parsing Free
Word Order Languages in the Paninian Framework.
ACL93: Proc. of Annual Meeting of Association for
Computational Linguistics. Association for Com-
putational Linguistics, New Jersey, 1993a, pp. 105-
111.

Kale, M.R. A Higher Sanskrit Grammar. 4th
Ed,Motilal Banarasidass Publishers Pvt. Ltd.

Hopcroft, John E., Motwani, Rajeev, Ullman, Jeffrey
D. 2002. Introduction to Automata Theory, Lan-
guages and Computation. 2nd Ed, Pearson Educa-
tion Pvt. Ltd., 2002.

